Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Aug 04 2021 10:11:39
%S 1,1,3,15,127,1895,53071,2953575,337064047,79446381319,38491200186831,
%T 38046637826801703,76226441027901385519,308075833912652114006087,
%U 2503633988838391023366024079,40826169678526460459483237927271,1334110729147927667553970495057395439
%N a(n) = Sum_{k=0..n} Stirling2(n,k) * 2^binomial(k,2).
%C Stirling transform of A006125.
%H Alois P. Heinz, <a href="/A335390/b335390.txt">Table of n, a(n) for n = 0..82</a>
%F G.f.: Sum_{k>=0} 2^binomial(k,2) * x^k / Product_{j=1..k} (1 - j*x).
%F E.g.f.: Sum_{k>=0} 2^binomial(k,2) * (exp(x) - 1)^k / k!.
%F a(n) ~ 2^(n*(n-1)/2). - _Vaclav Kotesovec_, Jun 05 2020
%p a:= n-> add(Stirling2(n, k)*2^(k*(k-1)/2), k=0..n):
%p seq(a(n), n=0..19); # _Alois P. Heinz_, Jun 05 2020
%t Table[Sum[StirlingS2[n, k] 2^Binomial[k, 2], {k, 0, n}], {n, 0, 16}]
%o (PARI) a(n) = sum(k=0, n, stirling(n,k,2) * 2^binomial(k,2)); \\ _Michel Marcus_, Jun 05 2020
%Y Cf. A006024, A006125.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Jun 04 2020