login
A281240
Solutions y to the negative Pell equation y^2 = 72*x^2 - 83232 with x,y >= 0.
3
0, 144, 480, 816, 1344, 3024, 4896, 7920, 17664, 28560, 46176, 102960, 166464, 269136, 600096, 970224, 1568640, 3497616, 5654880, 9142704, 20385600, 32959056, 53287584, 118815984, 192099456, 310582800, 692510304, 1119637680, 1810209216, 4036245840
OFFSET
1,2
COMMENTS
The corresponding values of x are in A281239.
LINKS
S. Vidhyalakshmi, V. Krithika, K. Agalya, On The Negative Pell Equation  y^2 = 72*x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016).
FORMULA
a(n) = 6*a(n-3) - a(n-6) for n>6.
G.f.: 48*x^2*(3 + 10*x + 17*x^2 + 10*x^3 + 3*x^4) / (1 - 6*x^3 + x^6).
EXAMPLE
144 is in the sequence because (x, y) = (38,144) is a solution to y^2 = 72*x^2 - 83232.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {0, 144, 480, 816, 1344, 3024}, 40] (* Harvey P. Dale, Oct 19 2022 *)
PROG
(PARI) concat(0, Vec(48*x^2*(3 + 10*x + 17*x^2 + 10*x^3 + 3*x^4) / (1 - 6*x^3 + x^6) + O(x^40)))
CROSSREFS
Cf. A281239.
Sequence in context: A258382 A151820 A322905 * A014770 A131528 A262797
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 19 2017
STATUS
approved