login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281237
Solutions x to the negative Pell equation y^2 = 72*x^2 - 73728 with x,y >= 0.
2
32, 96, 544, 3168, 18464, 107616, 627232, 3655776, 21307424, 124188768, 723825184, 4218762336, 24588748832, 143313730656, 835293635104, 4868448079968, 28375394844704, 165383920988256, 963928131084832, 5618184865520736, 32745181062039584, 190852901506716768
OFFSET
1,1
COMMENTS
The corresponding values of y are in A281238.
LINKS
S. Vidhyalakshmi, V. Krithika, K. Agalya, On The Negative Pell Equation  y^2 = 72*x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016).
FORMULA
a(n) = -8*sqrt(2)*((4-3*sqrt(2))*(3+2*sqrt(2))^n - (3-2*sqrt(2))^n*(4+3*sqrt(2))).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 32*x*(1 - 3*x) / (1 - 6*x + x^2).
EXAMPLE
96 is in the sequence because (x, y) = (96,768) is a solution to y^2 = 72*x^2 - 73728.
PROG
(PARI) Vec(32*x*(1 - 3*x) / (1 - 6*x + x^2) + O(x^30))
CROSSREFS
Cf. A281238.
Equals 32*A001541.
Sequence in context: A044600 A189884 A175165 * A197604 A287925 A039519
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 19 2017
STATUS
approved