OFFSET
1,1
COMMENTS
The corresponding values of y are in A281238.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
S. Vidhyalakshmi, V. Krithika, K. Agalya, On The Negative Pell Equation y^2 = 72*x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016).
Index entries for linear recurrences with constant coefficients, signature (6,-1).
FORMULA
a(n) = -8*sqrt(2)*((4-3*sqrt(2))*(3+2*sqrt(2))^n - (3-2*sqrt(2))^n*(4+3*sqrt(2))).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 32*x*(1 - 3*x) / (1 - 6*x + x^2).
EXAMPLE
96 is in the sequence because (x, y) = (96,768) is a solution to y^2 = 72*x^2 - 73728.
PROG
(PARI) Vec(32*x*(1 - 3*x) / (1 - 6*x + x^2) + O(x^30))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 19 2017
STATUS
approved