login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281236
Solutions y to the negative Pell equation y^2 = 72*x^2 - 332928 with x,y >= 0.
3
0, 288, 960, 1632, 2688, 6048, 9792, 15840, 35328, 57120, 92352, 205920, 332928, 538272, 1200192, 1940448, 3137280, 6995232, 11309760, 18285408, 40771200, 65918112, 106575168, 237631968, 384198912, 621165600, 1385020608, 2239275360, 3620418432, 8072491680
OFFSET
1,2
COMMENTS
The corresponding values of x are in A281235.
LINKS
S. Vidhyalakshmi, V. Krithika, K. Agalya, On The Negative Pell Equation  y^2 = 72*x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016).
FORMULA
a(n) = 6*a(n-3) - a(n-6) for n>6.
G.f.: 96*x^2*(3 + 10*x + 17*x^2 + 10*x^3 + 3*x^4) / (1 - 6*x^3 + x^6).
EXAMPLE
288 is in the sequence because (x, y) = (76, 288) is a solution to y^2 = 72*x^2 - 332928.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {0, 288, 960, 1632, 2688, 6048}, 30] (* Harvey P. Dale, Jul 10 2019 *)
PROG
(PARI) concat(0, Vec(96*x^2*(3 + 10*x + 17*x^2 + 10*x^3 + 3*x^4) / (1 - 6*x^3 + x^6) + O(x^40)))
CROSSREFS
Cf. A281235.
Equals 2*A281240.
Sequence in context: A292054 A250788 A179646 * A237369 A280936 A250871
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 19 2017
STATUS
approved