login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Solutions y to the negative Pell equation y^2 = 72*x^2 - 332928 with x,y >= 0.
3

%I #11 Jul 10 2019 16:30:11

%S 0,288,960,1632,2688,6048,9792,15840,35328,57120,92352,205920,332928,

%T 538272,1200192,1940448,3137280,6995232,11309760,18285408,40771200,

%U 65918112,106575168,237631968,384198912,621165600,1385020608,2239275360,3620418432,8072491680

%N Solutions y to the negative Pell equation y^2 = 72*x^2 - 332928 with x,y >= 0.

%C The corresponding values of x are in A281235.

%H Colin Barker, <a href="/A281236/b281236.txt">Table of n, a(n) for n = 1..1000</a>

%H S. Vidhyalakshmi, V. Krithika, K. Agalya, <a href="http://www.ijeter.everscience.org/Manuscripts/Volume-4/Issue-2/Vol-4-issue-2-M-04.pdf">On The Negative Pell Equation y^2 = 72*x^2 - 8</a>, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016).

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,6,0,0,-1).

%F a(n) = 6*a(n-3) - a(n-6) for n>6.

%F G.f.: 96*x^2*(3 + 10*x + 17*x^2 + 10*x^3 + 3*x^4) / (1 - 6*x^3 + x^6).

%e 288 is in the sequence because (x, y) = (76, 288) is a solution to y^2 = 72*x^2 - 332928.

%t LinearRecurrence[{0,0,6,0,0,-1},{0,288,960,1632,2688,6048},30] (* _Harvey P. Dale_, Jul 10 2019 *)

%o (PARI) concat(0, Vec(96*x^2*(3 + 10*x + 17*x^2 + 10*x^3 + 3*x^4) / (1 - 6*x^3 + x^6) + O(x^40)))

%Y Cf. A281235.

%Y Equals 2*A281240.

%K nonn,easy

%O 1,2

%A _Colin Barker_, Jan 19 2017