OFFSET
1,1
COMMENTS
This sequence is infinite, because it contains several infinite subsequences such as: sqrt(1584*4851)=2772, sqrt(15984*48951)=27972, sqrt(159..984*489...951)=279...972.
It appears that the first (or last) digit is never 5, 6 or 7.
LINKS
Pieter Post and Giovanni Resta, Table of n, a(n) for n = 1..1124 (first 246 terms from Pieter Post, terms < 10^12)
FORMULA
Numbers n such that sqrt(n*reversal(n)) is a palindrome, where n is not a palindrome.
EXAMPLE
27648 is in the sequence because sqrt(27648*84672)=48384.
MATHEMATICA
palQ[n_] := Block[{d = IntegerDigits@ n}, And[IntegerQ@ n, d == Reverse@ d]]; Select[Range@ 100000, And[! palQ@ #, palQ[Sqrt[# FromDigits@ Reverse@ IntegerDigits@ #]]] &] (* Michael De Vlieger, May 28 2015 *)
PROG
(Python)
for n in range (1, 10**9):
....y=int(str(n)[::-1])
....ya=int(pow(n*y, 1/2))
....if ya==int(str(ya)[::-1]) and n*y==ya**2 and n!=y:
........print (n)
(PARI) rev(k) = subst(Polrev(digits(k)), x, 10);
isok(n) = {rn = rev(n); if (rn != n, nrn = n*rn; issquare(nrn) && (y=sqrtint(nrn)) && (y == rev(y)); ); } \\ Michel Marcus, May 29 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Pieter Post, May 28 2015
STATUS
approved