login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002778 Numbers whose square is a palindrome.
(Formerly M0907 N0342)
48
0, 1, 2, 3, 11, 22, 26, 101, 111, 121, 202, 212, 264, 307, 836, 1001, 1111, 2002, 2285, 2636, 10001, 10101, 10201, 11011, 11111, 11211, 20002, 20102, 22865, 24846, 30693, 100001, 101101, 110011, 111111, 200002, 798644, 1000001, 1001001 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A002779(n) = a(n)^2; A136522(A000290(a(n))) = 1. - Reinhard Zumkeller, Oct 11 2011

See A016113 for the subset of numbers whose palindromic squares have an even number of digits. - M. F. Hasler, Jun 08 2014

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Hans Havermann (via Feng Yuan), T. D. Noe (from P. De Geest) [to 485], Table of n, a(n) for n = 1..1940

Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, arXiv:1210.7593 [math.NT], 2012. - From N. J. A. Sloane, Nov 08 2012

Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5.

Patrick De Geest, Palindromic Squares

Michael Keith, Classification and enumeration of palindromic squares, J. Rec. Math., 22 (No. 2, 1990), 124-132. [Annotated scanned copy]

William Rex Marshall, Palindromic Squares

Gustavus J. Simmons, Palindromic powers, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy]

Gustavus J. Simmons, On palindromic squares of non-palindromic numbers, J. Rec. Math., 5 (No. 1, 1972), 11-19. [Annotated scanned copy]

Eric Weisstein's World of Mathematics, Palindromic Number.

Feng Yuan, Palindromic Square Numbers

EXAMPLE

26^2 = 676, which is a palindrome, so 26 is in the sequence.

27^2 = 729, which is not a palindrome, so 27 is not in the sequence.

MATHEMATICA

palsquareQ[n_] := (n2 = IntegerDigits[n^2]; n2 == Reverse[n2]); A002778 = {}; Do[ If[palsquareQ[n], Print[n]; AppendTo[A002778, n]], {n, 0, 2 * 10^6}]; A002778 (* Jean-François Alcover, Dec 01 2011 *)

Sqrt[#]&/@Select[Range[0, 12 * 10^5]^2, # == IntegerReverse[#] &] (* The program uses the IntegerReverse function from Mathematica version 10. - Harvey P. Dale, Mar 04 2016 *)

Select[Range[0, 1001001], PalindromeQ[#^2] &] (* Michael De Vlieger, Dec 06 2017 *)

PROG

(Haskell)

a002778 n = a002778_list !! (n-1)

a002778_list = filter ((== 1) . a136522 . (^ 2)) [0..]

-- Reinhard Zumkeller, Oct 11 2011

(PARI) is_A002778(n)=is_A002113(n^2) \\ M. F. Hasler, Jun 08 2014

(MAGMA) [n: n in [0..2*10^6] | Intseq(n^2) eq Reverse(Intseq(n^2))]; // Vincenzo Librandi, Apr 07 2015

CROSSREFS

Cf. A002779, A002113, A016113, A136522, A000290.

See A003166 for binary analog.

For analogs in bases 2,3,4,5,etc. see A003166 onwards, A029984 onwards, and A263607 onwards.

Sequence in context: A295958 A049083 A305719 * A028816 A316187 A215952

Adjacent sequences:  A002775 A002776 A002777 * A002779 A002780 A002781

KEYWORD

base,nonn,nice,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Patrick De Geest

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 22:57 EST 2018. Contains 318081 sequences. (Running on oeis4.)