login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295958 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences. 2
2, 3, 11, 21, 40, 70, 120, 201, 334, 549, 898, 1463, 2378, 3859, 6256, 10135, 16412, 26570, 43006, 69601, 112633, 182261, 294922, 477212, 772164, 1249407, 2021603, 3271043, 5292680, 8563758, 13856474, 22420269, 36276781, 58697089, 94973910, 153671041 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

See A295862 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..2000

Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.

EXAMPLE

a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5

b(3) = 6 (least "new number")

a(2) = a(1) + a(0) + b(2) + 1 = 11

Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)

MATHEMATICA

a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;

a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1;

j = 1; While[j < 6, k = a[j] - j - 1;

While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];

Table[a[n], {n, 0, k}];  (* A295958 *)

CROSSREFS

Cf. A001622, A000045, A295862.

Sequence in context: A298351 A023182 A302310 * A049083 A305719 A002778

Adjacent sequences:  A295955 A295956 A295957 * A295959 A295960 A295961

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Dec 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 27 18:27 EDT 2021. Contains 346308 sequences. (Running on oeis4.)