login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147599
Expansion of Product_{i>=1} (1+x^(4*i-1)).
24
1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 1, 0, 3, 4, 1, 1, 4, 4, 1, 1, 5, 5, 1, 2, 7, 5, 1, 3, 8, 6, 1, 5, 10, 6, 2, 6, 12, 7, 2, 9, 14, 7, 3, 11, 16, 8, 4, 15, 19, 8, 6, 18, 21, 9, 8, 23, 24, 10, 11, 27, 27, 11, 14, 34, 30, 12, 19, 39, 33, 14, 24, 47
OFFSET
0,19
COMMENTS
Number of partitions into distinct parts 4*k+3.
Convolution of A147599 and A169975 is A000700. - Vaclav Kotesovec, Jan 18 2017
LINKS
FORMULA
G.f. sum(n>=0, x^(2*n^2+n) / prod(k=1,n, 1-x^(4*k))) - Joerg Arndt, Mar 10 2011.
a(n) ~ exp(sqrt(n/3)*Pi/2) / (4*6^(1/4)*n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017
MATHEMATICA
nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 18 2017 *)
nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 4] == 3, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 29 2010
STATUS
approved