login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{i>=1} (1+x^(4*i-1)).
24

%I #19 Nov 22 2020 09:00:50

%S 1,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0,2,1,0,1,2,1,0,1,3,1,0,2,3,1,0,3,

%T 4,1,1,4,4,1,1,5,5,1,2,7,5,1,3,8,6,1,5,10,6,2,6,12,7,2,9,14,7,3,11,16,

%U 8,4,15,19,8,6,18,21,9,8,23,24,10,11,27,27,11,14,34,30,12,19,39,33,14,24,47

%N Expansion of Product_{i>=1} (1+x^(4*i-1)).

%C Number of partitions into distinct parts 4*k+3.

%C Convolution of A147599 and A169975 is A000700. - _Vaclav Kotesovec_, Jan 18 2017

%H Vaclav Kotesovec, <a href="/A147599/b147599.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f. sum(n>=0, x^(2*n^2+n) / prod(k=1,n, 1-x^(4*k))) - _Joerg Arndt_, Mar 10 2011.

%F a(n) ~ exp(sqrt(n/3)*Pi/2) / (4*6^(1/4)*n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - _Vaclav Kotesovec_, Jan 18 2017

%t nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jan 18 2017 *)

%t nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 4] == 3, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* _Vaclav Kotesovec_, Jan 18 2017 *)

%Y Cf. A000700, A169975, A170956-A170965.

%Y Cf. A262928, A281243, A281244, A281245.

%K nonn

%O 0,19

%A _N. J. A. Sloane_, Aug 29 2010