The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147598 Expansion of g.f. 1/((1-x^2+x^3+x^4-x^5)*(1-x-x^2+x^3-x^5)). 3
 1, 1, 3, 2, 4, 3, 6, 9, 14, 23, 29, 45, 57, 88, 123, 184, 267, 382, 556, 787, 1149, 1643, 2392, 3444, 4978, 7184, 10348, 14956, 21550, 31152, 44924, 64881, 93611, 135101, 195000, 281382, 406201, 586164, 846121, 1221064, 1762399, 2543555, 3671003 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,2,-3,-1,5,-1,-3,2,1,-1). FORMULA G.f.: -1/(x^5*f(x)*f(1/x)), where f(x) = -1 +x^2 -x^3 -x^4 +x^5. G.f.: 1/((x^5-x^4-x^3+x^2-1)*(x^5-x^3+x^2+x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009 MATHEMATICA f[x_]= x^5 -x^4 -x^3 +x^2 -1; CoefficientList[Series[-1/(x^5*f[x]*f[1/x]), {x, 0, 50}], x] PROG (Magma) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x^2+x^3+x^4-x^5)*(1-x-x^2+x^3-x^5)) )); // G. C. Greubel, Oct 25 2022 (SageMath) def A147598_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( 1/((1-x^2+x^3+x^4-x^5)*(1-x-x^2+x^3-x^5)) ).list() A147598_list(50) # G. C. Greubel, Oct 25 2022 CROSSREFS Cf. A147605, A147606, A147607, A147617, A147620. Sequence in context: A141731 A294145 A024856 * A023869 A024596 A262610 Adjacent sequences: A147595 A147596 A147597 * A147599 A147600 A147601 KEYWORD nonn,easy,less AUTHOR Roger L. Bagula, Nov 08 2008 EXTENSIONS Better name (using g.f.) from Joerg Arndt, Apr 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 8 01:34 EST 2023. Contains 360133 sequences. (Running on oeis4.)