login
A147620
Expansion of g.f.: 1/((1 - x - x^2 + x^6 - x^8)*(1 - x^2 + x^6 + x^7 - x^8)).
4
1, 1, 3, 4, 8, 12, 19, 29, 46, 70, 111, 170, 271, 422, 668, 1048, 1655, 2603, 4104, 6453, 10167, 15989, 25175, 39599, 62329, 98064, 154335, 242845, 382183, 601399, 946451, 1489366, 2343847, 3688412, 5804459, 9134287, 14374533, 22620800, 35597998
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1,0,-2,0,5,0,-2,0,-1,-1,2,1,-1).
FORMULA
G.f.: 1/(1 - x - 2*x^2 + x^3 + x^4 + 2*x^6 - 5*x^8 + 2*x^10 + x^12 + x^13 - 2*x^14 - x^15 + x^16).
MATHEMATICA
f[x_]= -1+x^2-x^6-x^7+x^8;
CoefficientList[Series[-1/(x^8*f[x]*f[1/x]), {x, 0, 50}], x]
PROG
(PARI) Vec(1/(1-x-2*x^2+x^3+x^4+2*x^6-5*x^8+2*x^10+x^12+x^13-2*x^14-x^15+x^16) + O(x^40)) \\ Jinyuan Wang, Mar 10 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x-x^2+x^6- x^8)*(1-x^2+x^6+x^7-x^8)) )); // G. C. Greubel, Oct 24 2022
(SageMath)
def A147620_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x-x^2+x^6-x^8)*(1-x^2+x^6+x^7-x^8)) ).list()
A147620_list(40) # G. C. Greubel, Oct 24 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 08 2008
EXTENSIONS
Definition corrected by N. J. A. Sloane, Nov 09 2008
STATUS
approved