login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229990
Numbers k such that the interval [floor((k+1)/2), floor(3*(k+1)/2)] contains more primes than the interval [floor(k/2), floor(3*k/2)] does.
2
1, 3, 4, 8, 12, 19, 20, 24, 28, 31, 40, 44, 48, 52, 55, 64, 67, 68, 71, 72, 84, 91, 92, 99, 100, 104, 108, 111, 115, 120, 127, 128, 131, 132, 140, 148, 151, 152, 155, 160, 171, 175, 180, 184, 187, 188, 204, 208, 211, 220, 224, 231, 232, 235, 239, 244, 248, 252
OFFSET
1,2
LINKS
EXAMPLE
4 is in this sequence because [[5/2], [15/2]] contains the primes 2,3,5,7, while [[4/2], [12/2]] contains the primes 2,3,5.
MAPLE
with(numtheory): isA229990 := proc(n) return pi(floor(3*(n+1)/2))-pi(floor((n+1)/2)-1) > pi(floor(3*n/2))-pi(floor(n/2)-1): end proc: seq(`if`(isA229990(n), n, NULL), n=1..252); # Nathaniel Johnston, Oct 11 2013
MATHEMATICA
z = 1000; c[n_] := PrimePi[Floor[3 n/2]] - PrimePi[Floor[n/2]-1];
t = Table[c[n], {n, 1, z}]; (* A229989 *)
Flatten[Position[Differences[t], -1]] (* A076274? *)
Flatten[Position[Differences[t], 1]] (* A229990 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 09 2013
STATUS
approved