login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147618
The 3rd Witt transform of A000217.
2
0, 0, 0, 0, 3, 15, 54, 165, 429, 999, 2145, 4290, 8100, 14586, 25194, 41985, 67830, 106590, 163431, 245157, 360525, 520749, 740025, 1036035, 1430703, 1950975, 2629575, 3506085, 4628052, 6052068, 7845255, 10086780, 12869340, 16301142
OFFSET
0,5
COMMENTS
The 2nd Witt transform of A000217 is essentially in A032092.
LINKS
Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160.
Index entries for linear recurrences with constant coefficients, signature (6,-15,23,-33,51,-64,63,-63,64,-51,33,-23,15,-6,1).
FORMULA
G.f.: 3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3).
a(n) = (1/81)*(n*(n+3)*(3*n^6 +27*n^5 +45*n^4 -135*n^3 -288*n^2 +108*n -2000)/4480 +2*A049347(n) +A049347(n-1) +(-1)^n*(A099254(n) -2*A099254(n- 1)) -3*(-1)^n*(A128504(n) -2*A128504(n-1))). - G. C. Greubel, Oct 24 2022
MATHEMATICA
CoefficientList[Series[3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 13 2012 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0, 0, 0, 0] cat Coefficients(R!( 3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3) )); // G. C. Greubel, Oct 24 2022
(SageMath)
def A147618_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 3*x^4*(1-x+3*x^2-x^3+x^4)/((1-x)^9*(1+x+x^2)^3) ).list()
A147618_list(30) # G. C. Greubel, Oct 24 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Nov 08 2008
STATUS
approved