|
|
A147615
|
|
a(n) = 13 + Sum_{j=4..n+3} j!.
|
|
2
|
|
|
13, 37, 157, 877, 5917, 46237, 409117, 4037917, 43954717, 522956317, 6749977117, 93928268317, 1401602636317, 22324392524317, 378011820620317, 6780385526348317, 128425485935180317, 2561327494111820317, 53652269665821260317, 1177652997443428940317
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Are there infinitely many terms in the intersection of this sequence and A036570?
Answer from Don Reble, Mar 25 2016: No, after the ninth term, all terms are multiples of 13.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..445
|
|
FORMULA
|
a(n) = 13 + !(n+4) - !4 = 13 + A003422(n+4) - A003422(4). - G. C. Greubel, Oct 24 2022
|
|
EXAMPLE
|
a(0) = 13, a(1) = 13 + 4!, a(2) = 13 + 4! + 5!, ....
|
|
MATHEMATICA
|
A147615[n_]:= 13 +Sum[j!, {j, 4, n+3}]; Table[A147615[n], {n, 0, 30}] (* G. C. Greubel, Oct 24 2022 *)
|
|
PROG
|
(Magma) [n eq 0 select 13 else 13 + (&+[Factorial(j+4): j in [0..n-1]]): n in [0..30]]; // G. C. Greubel, Oct 24 2022
(SageMath)
def A147615(n): return 13 + sum(factorial(j+4) for j in range(n))
[A147615(n) for n in range(30)] # G. C. Greubel, Oct 24 2022
|
|
CROSSREFS
|
Cf. A003422, A036570.
Sequence in context: A139860 A201480 A036570 * A298683 A173872 A155241
Adjacent sequences: A147612 A147613 A147614 * A147616 A147617 A147618
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ricky Pollack (rickypollack(AT)gmail.com), Apr 30 2009
|
|
STATUS
|
approved
|
|
|
|