login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147606
Expansion of g.f.: 1/((1 - x - x^2 + x^4 - x^6)*(1 - x^2 + x^4 + x^5 - x^6)).
5
1, 1, 3, 4, 6, 8, 12, 15, 25, 35, 56, 84, 130, 192, 294, 432, 654, 972, 1466, 2192, 3308, 4953, 7463, 11185, 16820, 25224, 37906, 56868, 85445, 128239, 192643, 289196, 434364, 652124, 979372, 1470436, 2208192, 3315556, 4978892, 7475948, 11226252
OFFSET
0,3
LINKS
FORMULA
G.f.: 1/(1 - x - 2*x^2 + x^3 + 3*x^4 - 5*x^6 + 3*x^8 + x^9 - 2*x^10 - x^11 + x^12).
G.f.: -1/(x^6*f(x)*f(1/x)), where f(x) = -1 + x + x^2 - x^4 + x^6. - G. C. Greubel, Oct 24 2022
MATHEMATICA
f[x_]= -1+x+x^2-x^4+x^6;
CoefficientList[Series[-1/(x^6*f[x]*f[1/x]), {x, 0, 50}], x] (* G. C. Greubel, Oct 24 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x-x^2+x^4-x^6)*(1-x^2+x^4+x^5-x^6)) )); // G. C. Greubel, Oct 24 2022
(SageMath)
def A147606_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x-x^2+x^4-x^6)*(1-x^2+x^4+x^5-x^6)) ).list()
A147606_list(50) # G. C. Greubel, Oct 24 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 08 2008
EXTENSIONS
Definition corrected by N. J. A. Sloane, Nov 09 2008
STATUS
approved