login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192276
Numbers n such that the number of anti-divisors of n divides n.
1
3, 4, 6, 8, 12, 15, 16, 21, 24, 25, 30, 35, 36, 40, 48, 51, 54, 55, 60, 63, 64, 65, 69, 70, 72, 75, 80, 84, 90, 96, 100, 112, 114, 120, 125, 126, 133, 140, 141, 143, 147, 155, 156, 160, 161, 171, 174, 180, 189, 190, 200, 205, 207, 210, 216, 220, 231, 240
OFFSET
1,1
COMMENTS
Like A033950 but using anti-divisors.
LINKS
EXAMPLE
There are 3 anti-divisors of 30: 4, 12, 10; 3 divides 30, so 30 is in the sequence.
MAPLE
with(numtheory);
P:=proc(i)
local a, b, k, n;
for n from 3 by 1 to i do
a:={};
for k from 2 to n-1 do if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi; od;
b:=nops(a);
if trunc(n/b)=n/b then print(n); fi;
od;
end:
P(10000);
MATHEMATICA
Select[Range[3, 400], Function[n, Mod[n, Length@Select[Range[2, n - 1], Abs[Mod[n, #] - #/2] < 1 &]] == 0]] (* Olivier Gérard, Jul 05 2011 *)
PROG
(Magma) Antidivisors:=func< n | [ d: d in [1..n-1] | n mod d ne 0 and ((IsEven(d) and 2*n mod d eq 0) or (IsOdd(d) and ((2*n-1) mod d eq 0 or (2*n+1) mod d eq 0))) ] >; [ n: n in [3..10^4] | IsDivisibleBy(n, #Antidivisors(n)) ]; // Bruno Berselli, Jul 06 2011
(Python)
[n for n in range(3, 10**5) if not n % len([d for d in range(2, n) if n%d and 2*n%d in [d-1, 0, 1]])] # Chai Wah Wu, Aug 08 2014
CROSSREFS
Sequence in context: A320592 A225531 A129295 * A049305 A147606 A279083
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jul 05 2011
STATUS
approved