login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147604
Expansion of g.f.: (1 + x^2 - x^3)/(1 - x - x^2 + x^3 - x^5).
1
1, 1, 3, 2, 4, 4, 7, 10, 15, 22, 31, 45, 64, 93, 134, 194, 280, 404, 583, 841, 1214, 1752, 2529, 3650, 5268, 7603, 10973, 15837, 22857, 32989, 47612, 68717, 99177, 143139, 206588, 298162, 430328, 621079, 896384, 1293723, 1867190, 2694857, 3889403
OFFSET
0,3
FORMULA
G.f.: (1 + x^2 - x^3)/(1 - x - x^2 + x^3 - x^5). - Colin Barker, Nov 02 2012
MATHEMATICA
LinearRecurrence[{1, 1, -1, 0, 1}, {1, 1, 3, 2, 4}, 51] (* G. C. Greubel, Oct 25 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^2-x^3)/(1-x-x^2+x^3-x^5) )); // G. C. Greubel, Oct 25 2022
(SageMath)
def A147604_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^2-x^3)/(1-x-x^2+x^3-x^5) ).list()
A147604_list(50) # G. C. Greubel, Oct 25 2022
CROSSREFS
Sequence in context: A241412 A241445 A371180 * A095401 A309511 A195472
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 08 2008
EXTENSIONS
Edited by G. C. Greubel, Oct 25 2022
STATUS
approved