login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309511
Number of odd parts in the partitions of n into 3 parts.
1
0, 0, 0, 3, 2, 4, 4, 8, 8, 13, 12, 18, 18, 24, 24, 33, 32, 40, 40, 50, 50, 61, 60, 72, 72, 84, 84, 99, 98, 112, 112, 128, 128, 145, 144, 162, 162, 180, 180, 201, 200, 220, 220, 242, 242, 265, 264, 288, 288, 312, 312, 339, 338, 364, 364, 392, 392, 421, 420
OFFSET
0,4
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((i mod 2) + (j mod 2) + ((n-i-j) mod 2)).
Conjectures from Colin Barker, Aug 06 2019: (Start)
G.f.: x^3*(3 - x + 2*x^2 + x^4 + x^5) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>10.
(End)
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 3 2 4 4 8 8 13 12 ...
-----------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[Mod[i, 2] + Mod[j, 2] + Mod[n - i - j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
Table[Count[Flatten[IntegerPartitions[n, {3}]], _?OddQ], {n, 0, 60}] (* Harvey P. Dale, Jan 16 2022 *)
CROSSREFS
Sequence in context: A371180 A147604 A095401 * A195472 A370806 A240538
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 05 2019
STATUS
approved