Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Dec 26 2022 05:02:00
%S 1,1,3,2,4,4,7,10,15,22,31,45,64,93,134,194,280,404,583,841,1214,1752,
%T 2529,3650,5268,7603,10973,15837,22857,32989,47612,68717,99177,143139,
%U 206588,298162,430328,621079,896384,1293723,1867190,2694857,3889403
%N Expansion of g.f.: (1 + x^2 - x^3)/(1 - x - x^2 + x^3 - x^5).
%H G. C. Greubel, <a href="/A147604/b147604.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,1).
%F G.f.: (1 + x^2 - x^3)/(1 - x - x^2 + x^3 - x^5). - _Colin Barker_, Nov 02 2012
%t LinearRecurrence[{1,1,-1,0,1}, {1,1,3,2,4}, 51] (* _G. C. Greubel_, Oct 25 2022 *)
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^2-x^3)/(1-x-x^2+x^3-x^5) )); // _G. C. Greubel_, Oct 25 2022
%o (SageMath)
%o def A147604_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( (1+x^2-x^3)/(1-x-x^2+x^3-x^5) ).list()
%o A147604_list(50) # _G. C. Greubel_, Oct 25 2022
%K nonn,easy
%O 0,3
%A _Roger L. Bagula_, Nov 08 2008
%E Edited by _G. C. Greubel_, Oct 25 2022