login
A241445
Number of partitions of n such that the number of parts having multiplicity 1 is not a part and the number of distinct parts is not a part.
5
1, 0, 1, 1, 3, 2, 4, 4, 7, 7, 11, 15, 21, 24, 36, 45, 59, 73, 99, 114, 155, 183, 241, 287, 371, 433, 567, 668, 842, 1003, 1270, 1483, 1856, 2205, 2707, 3210, 3940, 4627, 5661, 6656, 8050, 9489, 11432, 13385, 16070, 18855, 22459, 26310, 31253, 36487, 43249
OFFSET
0,5
FORMULA
a(n) + A241446(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 4 partitions: 6, 51, 33, 222.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]]; d[p_] := Length[DeleteDuplicates[p]];
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, d[p]]], {n, 0, z}] (* A241442 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, d[p]] ], {n, 0, z}] (* A241443 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241444 *)
Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, d[p]] ], {n, 0, z}] (* A241445 *)
Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, d[p]] ], {n, 0, z}] (* A241446 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 23 2014
STATUS
approved