The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147600 Expansion of 1/(1 - 3*x^2 + x^4). 8
 1, 0, 3, 0, 8, 0, 21, 0, 55, 0, 144, 0, 377, 0, 987, 0, 2584, 0, 6765, 0, 17711, 0, 46368, 0, 121393, 0, 317811, 0, 832040, 0, 2178309, 0, 5702887, 0, 14930352, 0, 39088169, 0, 102334155, 0, 267914296, 0, 701408733, 0, 1836311903, 0, 4807526976, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS S(n,sqrt(5)), with the Chebyshev polynomials A049310, is an integer sequence in the real quadratic number field Q(sqrt(5)) with basis numbers <1,phi>, phi:=(1+sqrt(5))/2 . S(n,sqrt(5)) = A(n) + 2*B(n)*phi, with A(n) = A005013(n+1)*(-1)^n and B(n) = a(n-1), n>=0, with a(-1)=0. - Wolfdieter Lang, Nov 24 2010 The sequence (s(n)) given by s(0) = 0 and s(n) = a(n-1) for n > 0 is the p-INVERT of (0, 1, 0, 1, 0, 1, ...) using p(S) = 1 - S^2; see A291219. - Clark Kimberling, Aug 30 2017 From Jean-François Alcover, Sep 24 2017: (Start) Consider this array of successive differences: 0, 0, 0, 1, 0, 3, 0, 8, 0, 21, ... 0, 0, 1, -1, 3, -3, 8, -8, 21, -21, ... 0, 1, -2, 4, -6, 11, -16, 29, -42, 76, ... 1, -3, 6, -10, 17, -27, 45, -71, 118, -186, ... -4, 9, -16, 27, -44, 72, -116, 189, -304, 495, ... 13, -25, 43, -71, 116, -188, 305, -493, 799, -1291, ... -38, 68, -114, 187, -304, 493, -798, 1292, -2090, 3383, ... ... First row = even index Fibonacci numbers with interleaved zeroes = this sequence right-shifted 3 positions. Main diagonal = 0,0,-2,-10,-44,-188,-798, ... = -A099919 right shifted. First upper subdiagonal = 0,1,4,17,72,305,1292,... = A001076 right shifted. Second upper subdiagonal = 0,-1,-6,-27,-116,-493,-2090, ... = -A049651. Third upper subdiagonal = 1,3,11,45,189,799,3383, ... = A292278. (End) (Comment based on an e-mail from Paul Curtz) LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1). FORMULA O.g.f.: 1/(1 - 3*x^2 + x^4). a(2*k) = F(2*(k+1)), a(2*k+1) = 0, k>=0, with F(n)=A000045(n). - Richard Choulet, Nov 13 2008 a(n) + a(n-1) + a(n-2) = A005013(n + 1). - Michael Somos, Apr 13 2012 a(n) = (2^(-2-n)*((1 + (-1)^n)*((-3+sqrt(5))*(-1+sqrt(5))^n + (1+sqrt(5))^n*(3+sqrt(5)))))/sqrt(5). - Colin Barker, Mar 28 2016 EXAMPLE G.f. = 1 + 3*x^2 + 8*x^4 + 21*x^6 + 55*x^8 + 144*x^10 + 377*x^12 + 987*x^14 + ... MATHEMATICA f[x_]= -1 -x +x^2; CoefficientList[Series[-1/(x^2*f[x]*f[1/x]), {x, 0, 60}], x] (* or *) M={{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {-1, 0, 3, 0}}; v[0]= {1, 0, 3, 0}; v[n_]:= v[n]= M.v[n-1]; Table[v[n][[1]], {n, 0, 60}] LinearRecurrence[{0, 3, 0, -1}, {1, 0, 3, 0}, 60] (* Jean-François Alcover, Sep 23 2017 *) PROG (PARI) Vec(1/(1 - 3*x^2 + x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012 (Magma) [(1+(-1)^n)*Fibonacci(n+2)/2: n in [0..60]]; // G. C. Greubel, Oct 25 2022 (SageMath) [((n+1)%2)*fibonacci(n+2) for n in range(60)] # G. C. Greubel, Oct 25 2022 CROSSREFS Cf. A000045, A001076, A001906, A005013, A049310. Cf. A049651, A088305, A099919, A291219, A292278. Sequence in context: A209491 A201575 A194796 * A022895 A197416 A197512 Adjacent sequences: A147597 A147598 A147599 * A147601 A147602 A147603 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Nov 08 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 20:27 EST 2022. Contains 358362 sequences. (Running on oeis4.)