login
A049651
a(n) = (F(3*n+1) - 1)/2, where F=A000045 (the Fibonacci sequence).
10
0, 1, 6, 27, 116, 493, 2090, 8855, 37512, 158905, 673134, 2851443, 12078908, 51167077, 216747218, 918155951, 3889371024, 16475640049, 69791931222, 295643364939, 1252365390980, 5305104928861, 22472785106426, 95196245354567, 403257766524696, 1708227311453353, 7236167012338110
OFFSET
0,3
COMMENTS
This is the sequence A(0,1;4,1;2) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
For n>0, a(n) is the least number whose greedy Fibonacci-union-Lucas representation (as at A214973), has n terms. - Clark Kimberling, Oct 23 2012
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 24.
FORMULA
From Ralf Stephan, Jan 23 2003: (Start)
a(n) = 4*a(n-1) + a(n-2) + 2, a(0)=0, a(1)=1.
G.f.: x*(1+x)/((1-x)*(1-4*x-x^2)).
a(n) is asymptotic to -1/2+(sqrt(5)+5)/20*(sqrt(5)+2)^n. (End)
a(n+1) = F(2) + F(5) + F(8) + ... + F(3n+2).
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3), a(0)=0, a(1)=1, a(2)= 6. Observation by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010
a(2*n) = A077259(2*n); a(2*n+1) = A294262(2*n+1). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
E.g.f.: exp(x)*(exp(x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)) - 5)/10. - Stefano Spezia, May 24 2024
MATHEMATICA
(Fibonacci[Range[1, 5!, 3]]-1)/2 (* Vladimir Joseph Stephan Orlovsky, May 18 2010 *)
LinearRecurrence[{5, -3, -1}, {0, 1, 6}, 50] (* G. C. Greubel, Dec 05 2017 *)
PROG
(PARI) vector(30, n, n--; (fibonacci(3*n+1) -1)/2) \\ G. C. Greubel, Dec 05 2017
(Magma) [(Fibonacci(3*n+1) - 1)/2: n in [0..30]]; // G. C. Greubel, Dec 05 2017
(Sage) [(fibonacci(3*n+1)-1)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019
CROSSREFS
Pairwise sums of A049652.
Sequence in context: A171475 A130019 A196919 * A109114 A373302 A080619
KEYWORD
nonn,easy
STATUS
approved