login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077259
First member of the Diophantine pair (m,k) that satisfies 5*(m^2 + m) = k^2 + k; a(n) = m.
18
0, 2, 6, 44, 116, 798, 2090, 14328, 37512, 257114, 673134, 4613732, 12078908, 82790070, 216747218, 1485607536, 3889371024, 26658145586, 69791931222, 478361013020, 1252365390980, 8583840088782, 22472785106426, 154030760585064, 403257766524696, 2763969850442378
OFFSET
0,2
LINKS
Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
Hermann Stamm-Wilbrandt, 6 interlaced bisections
FORMULA
Let b(n) be A007805(n). Then with a(0)=0, a(1)=2, a(2*n+2) = 2*a(2*n+1) - a(2*n) + 2*b(n), a(2*n+3) = 2*a(2*n+2) - a(2*n+1) + 2*b(n+1).
a(n) = (A000045(A007310(n+1))-1)/2. - Vladeta Jovovic, Nov 02 2002 [corrected by R. J. Mathar, Sep 16 2009]
a(0)=0, a(1)=2, a(n+2) = 4 + 9*a(n) + 2*sqrt(1 +20*a(n) +20*a(n)^2). - Herbert Kociemba, May 12 2008
a(0)=0, a(1)=2, a(2)=6, a(3)=44, a(n) = 18*a(n-2) - a(n-4) + 8. - Robert Phillips, Sep 01 2008
G.f.: 2*x*(1+x)^2/((1-x)*(1+4*x-x^2)*(1-4*x-x^2)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jul 15 2018
a(2*n) = A049651(2*n); a(2*n+1) = A110679(2*n+1). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Jul 24 2020
From Vladimir Pletser, Feb 07 2021: (Start)
a(n) = ((5+sqrt(5))*(2+sqrt(5))^n + (5-sqrt(5))*(2-sqrt(5))^n)/20 - 1/2 for even n;
a(n) = ((5+3*sqrt(5))*(2+sqrt(5))^n + (5-3*sqrt(5))*(2-sqrt(5))^n)/20 - 1/2 for odd n. (End)
EXAMPLE
a(3) = (2*6) - 2 + (2*17) = 12 - 2 + 34 = 44.
G.f. = 2*x + 6*x^2 + 44*x^3 + 116*x^4 + 798*x^5 + 2090*x^6 + 14328*x^7 + ... - Michael Somos, Jul 15 2018
MAPLE
f := gfun:-rectoproc({a(-2) = 2, a(-1) = 0, a(0) = 0, a(1) = 2, a(n) = 18*a(n - 2) - a(n - 4) + 8}, a(n), remember): map(f, [$ (0 .. 40)])[]; # Vladimir Pletser, Jul 24 2020
MATHEMATICA
LinearRecurrence[{1, 18, -18, -1, 1}, {0, 2, 6, 44, 116}, 30] (* G. C. Greubel, Jul 15 2018 *)
a[ n_] := With[{m = Max[n, -1 - n]}, SeriesCoefficient[ 2 x (x + 1)^2 / ((1 - x) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, m}]]; (* Michael Somos, Jul 15 2018 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(2*x*(x+1)^2/((1-x)*(x^2-4*x-1)*(x^2+4*x-1)))) \\ G. C. Greubel, Jul 15 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(2*x*(x+1)^2/((1-x)*(x^2-4*x-1)*(x^2+4*x-1)))); // G. C. Greubel, Jul 15 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002
EXTENSIONS
More terms from Colin Barker, Mar 23 2014
STATUS
approved