|
|
A077260
|
|
Triangular numbers that are 1/5 of a triangular number.
|
|
12
|
|
|
0, 3, 21, 990, 6786, 318801, 2185095, 102652956, 703593828, 33053933055, 226555027545, 10643263790778, 72950015275686, 3427097886697485, 23489678363743371, 1103514876252799416, 7563603483110089800, 355328363055514714491, 2435456831883085172253
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The triangular numbers 5x these are in A077261.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = b(n)*(b(n)+1)/2 where b(n) = A077259(n).
G.f.: (-3*x*(x^2+6*x+1))/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
|
|
EXAMPLE
|
Since b(3)=44 -> a(3)=44*45/2=990.
|
|
MATHEMATICA
|
CoefficientList[Series[(-3 x (x^2 + 6 x + 1))/((x - 1) (x^2 - 18 x + 1)*(x^2 + 18 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 21 2021 *)
|
|
PROG
|
(PARI) concat(0, Vec(-3*x*(x^2+6*x+1) / ((x-1)*(x^2-18*x+1)*(x^2+18*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Bruce Corrigan (scentman(AT)myfamily.com), Nov 01 2002
|
|
STATUS
|
approved
|
|
|
|