login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077263
Number of (undirected) cycles in the n-th order antiprism graph.
3
63, 179, 523, 1619, 5239, 17379, 58323, 196691, 664623, 2247443, 7601883, 25715603, 86993639, 294295491, 995592355, 3368062355, 11394070559, 38545861491, 130399711915, 441139061715, 1492362751831, 5048627021731, 17079382870643, 57779138376659
OFFSET
3,1
COMMENTS
Also the number of minimal edge cuts in the n-trapezohedron graph. - Eric W. Weisstein, Dec 11 2024
LINKS
Eric Weisstein's World of Mathematics, Antiprism Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Minimal Edge Cut.
Eric Weisstein's World of Mathematics, Trapezohedral Graph.
FORMULA
a(n) = 6*a(n-1) - 11*a(n-2) + 8*a(n-3) - 3*a(n-4) + 2*a(n-5) - a(n-6) for n>8. - Eric W. Weisstein, Dec 19 2013
G.f.: x^3*(63 - 199*x + 142*x^2 - 54*x^3 + 35*x^4 - 19*x^5)/((1 - x)^3*(1 - 3*x - x^2 - x^3)). - Bruno Berselli, Dec 20 2013
MATHEMATICA
LinearRecurrence[{6, -11, 8, -3, 2, -1}, {63, 179, 523, 1619, 5239, 17379}, 22] (* Eric W. Weisstein, Dec 19 2013 *)
Table[4 n (n - 1) + RootSum[-1 - # - 3 #^2 + #^3 &, #^n &], {n, 3, 20}] (* Eric W. Weisstein, May 05 2017 *)
CoefficientList[Series[(63 - 199 x + 142 x^2 - 54 x^3 + 35 x^4 - 19 x^5)/((-1 + x)^3 (-1 + 3 x + x^2 + x^3)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 14 2017 *)
CROSSREFS
Cf. A077265.
Sequence in context: A330433 A044395 A044776 * A098140 A008895 A359563
KEYWORD
nonn,easy,changed
AUTHOR
Eric W. Weisstein, Nov 01 2002
EXTENSIONS
a(7)-a(10) from Max Alekseyev, May 02 2010
STATUS
approved