login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (undirected) cycles in the n-th order antiprism graph.
3

%I #38 Dec 11 2024 09:26:35

%S 63,179,523,1619,5239,17379,58323,196691,664623,2247443,7601883,

%T 25715603,86993639,294295491,995592355,3368062355,11394070559,

%U 38545861491,130399711915,441139061715,1492362751831,5048627021731,17079382870643,57779138376659

%N Number of (undirected) cycles in the n-th order antiprism graph.

%C Also the number of minimal edge cuts in the n-trapezohedron graph. - _Eric W. Weisstein_, Dec 11 2024

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalEdgeCut.html">Minimal Edge Cut</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TrapezohedralGraph.html">Trapezohedral Graph</a>.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,8,-3,2,-1).

%F a(n) = 6*a(n-1) - 11*a(n-2) + 8*a(n-3) - 3*a(n-4) + 2*a(n-5) - a(n-6) for n>8. - _Eric W. Weisstein_, Dec 19 2013

%F G.f.: x^3*(63 - 199*x + 142*x^2 - 54*x^3 + 35*x^4 - 19*x^5)/((1 - x)^3*(1 - 3*x - x^2 - x^3)). - _Bruno Berselli_, Dec 20 2013

%t LinearRecurrence[{6, -11, 8, -3, 2, -1}, {63, 179, 523, 1619, 5239, 17379}, 22] (* _Eric W. Weisstein_, Dec 19 2013 *)

%t Table[4 n (n - 1) + RootSum[-1 - # - 3 #^2 + #^3 &, #^n &], {n, 3, 20}] (* _Eric W. Weisstein_, May 05 2017 *)

%t CoefficientList[Series[(63 - 199 x + 142 x^2 - 54 x^3 + 35 x^4 - 19 x^5)/((-1 + x)^3 (-1 + 3 x + x^2 + x^3)), {x, 0, 20}], x] (* _Eric W. Weisstein_, Dec 14 2017 *)

%Y Cf. A077265.

%K nonn,easy

%O 3,1

%A _Eric W. Weisstein_, Nov 01 2002

%E a(7)-a(10) from _Max Alekseyev_, May 02 2010