login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058635 (2^n)-th Fibonacci number. 19
1, 1, 3, 21, 987, 2178309, 10610209857723, 251728825683549488150424261, 141693817714056513234709965875411919657707794958199867 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The next term has 107 digits.

From Peter Bala, Oct 30 2013: (Start)

Apart from giving the numerators in the Engel series representation of 1/2*(7 - sqrt(5)), as noted below by Cloitre, this sequence (excluding the initial term) is also a generalized Pierce expansion defined as follows. Let x and b be positive real numbers. We define a Pierce expansion of x to the base b to be a nondecreasing sequence [a(1), a(2), a(3), ...] of positive integers such that we have an alternating series representation x = b/a(1) - b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) - ....

The present sequence, apart from the initial term, is a Pierce expansion of the real number x := 1/2*(3 - sqrt(5)) to the base b := 1/sqrt(5). The associated series representation begins 1/2*(3 - sqrt(5)) = b/1 - b^2/(1*3) + b^3/(1*3*21) - b^4/(1*3*21*987) + .... Cf. A071579 and A230338.

More generally, for n >= 0, the sequence [a(n+1), a(n+2), a(n+3), ...] gives a Pierce expansion of ( 1/2*(3 - sqrt(5)) )^(2^n) to the base b = 1/sqrt(5). Some examples are given below. (End)

REFERENCES

Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002, p. 446.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..12

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876. Mathematical Reviews, MR2959001. Zentralblatt MATH, Zbl 1255.05003.

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.

S. B. Ekhad and D. Zeilberger, How To Generate As Many Somos-Like Miracles as You Wish, arXiv preprint arXiv:1303.5306 [math.CO], 2013.

H. Hu, Z.-W. Sun and J.-X. Liu, Reciprocal sums of second order recurrent sequences, Fib. Quart. 39(2001), no. 3, 214-220.

FORMULA

a(n) = a(n-1)*A001566(n-2). - Joe Keane (jgk(AT)jgk.org), May 31 2002

Sum(n>=0, 1/a(n)) = (1/2)*(7-sqrt(5)). - Benoit Cloitre, Jan 26 2003

1/phi^2 = (.6180339...)^2 = 2/(3+sqrt5) = sum(n>=2, 1/a(n) ) = 1/3 + 1/21 + 1/987 + 1/2178309... - Gary W. Adamson, Jun 12 2003

a(n) = (G^(2^n) - (1 - G)^(2^n))/sqrt(5) where G = GoldenRatio = (1 + sqrt(5))/2. - Artur Jasinski, Oct 05 2008

a(n) = sqrt(4/5)*cosh((2^n)*arccosh(sqrt(5/4))). - Artur Jasinski, Oct 05 2008

a(n) = (a(n-1)^3 / a(n-2)^2 + 5 * a(n-1) * a(n-2)^2) / 2, for n > 1. - Lee A. Newberg, Jul 20 2010

Recurrence equations:

a(n)/a(n-1) = (a(n-1)/a(n-2))^2 - 2 for n >= 3.

a(n)/a(n-1) = 5*a(n-2)^2 + 2 for n >= 3.

a(n) = a(n-1)*sqrt(5*a(n-1)^2 + 4) for n >= 2. - Peter Bala, Oct 30 2013

0 = a(n)^2 * ( a(n+3) - 2*a(n+2) ) - a(n+1)*a(n+2) * ( a(n+2) - 2*a(n+1)) if n>0. - Michael Somos, Mar 24 2014

EXAMPLE

Let b = 1/sqrt(5) and x = 1/2*(3 - sqrt(5)). We have the following Pierce expansions to base b:

x = b/1 - b^2/(1*3) + b^3/(1*3*21) - b^4/(1*3*21*987) + ....

x^2 = b/3 - b^2/(3*21) + b^3/(3*21*987) - b^4/(3*21*987*2178309) + ....

x^4 = b/21 - b^2/(21*987) + b^3/(21*987*2178309) - ....

x^8 = b/987 - b^2/(987*2178309) + .... - Peter Bala, Oct 30 2013

MAPLE

a:= n-> (<<0|1>, <1|1>>^(2^n))[1, 2]:

seq(a(n), n=0..10);  # Alois P. Heinz, Nov 21 2014

MATHEMATICA

Table[ Fibonacci[ 2^n ], {n, 0, 9} ]

G = (1 + Sqrt[5])/2; Table[Expand[(G^(2^n) - (1 - G)^(2^n))/Sqrt[5]], {n, 1, 7}] (* Artur Jasinski, Oct 05 2008 *)

Table[Round[(4/5)^(1/2)*Cosh[2^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 10}] (* Artur Jasinski, Oct 05 2008 *)

PROG

(MAGMA) [Fibonacci(2^n): n in [0..10]]; // Vincenzo Librandi, Mar 25 2014

(PARI) a(n)=fibonacci(2^n) \\ Charles R Greathouse IV, Oct 03 2016

CROSSREFS

Cf. A000045, A054783, A001566, A071579, A230338.

Sequence in context: A111433 A111435 A111438 * A077260 A290766 A290872

Adjacent sequences:  A058632 A058633 A058634 * A058636 A058637 A058638

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Jan 16 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 15:12 EST 2020. Contains 338927 sequences. (Running on oeis4.)