Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #93 Jan 05 2025 19:51:36
%S 1,1,3,21,987,2178309,10610209857723,251728825683549488150424261,
%T 141693817714056513234709965875411919657707794958199867
%N a(n) = Fibonacci(2^n).
%C The next term has 107 digits.
%C From _Peter Bala_, Oct 30 2013: (Start)
%C Apart from giving the numerators in the Engel series representation of (1/2)*(7 - sqrt(5)), as noted below by Cloitre, this sequence (excluding the initial term) is also a generalized Pierce expansion defined as follows. Let x and b be positive real numbers. We define a Pierce expansion of x to the base b to be a nondecreasing sequence [a(1), a(2), a(3), ...] of positive integers such that we have an alternating series representation x = b/a(1) - b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) - ....
%C The present sequence, apart from the initial term, is a Pierce expansion of the real number x := (1/2)*(3 - sqrt(5)) to the base b := 1/sqrt(5). The associated series representation begins (1/2)*(3 - sqrt(5)) = b/1 - b^2/(1*3) + b^3/(1*3*21) - b^4/(1*3*21*987) + .... Cf. A071579 and A230338.
%C More generally, for n >= 0, the sequence [a(n+1), a(n+2), a(n+3), ...] gives a Pierce expansion of ( (1/2)*(3 - sqrt(5)) )^(2^n) to the base b = 1/sqrt(5). Some examples are given below. (End)
%C a(n) is the denominator of the n-th iterate when Newton's method is applied to the function x^2 - x - 1 with initial guess x = 1. The n-th iterate is A192222(n)/a(n). - _Jason Zimba_, Jan 20 2023
%D Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002, p. 446.
%H Vincenzo Librandi, <a href="/A058635/b058635.txt">Table of n, a(n) for n = 0..12</a>
%H Mohammad K. Azarian, <a href="http://www.m-hikari.com/ijcms/ijcms-2012/37-40-2012/azarianIJCMS37-40-2012.pdf">Fibonacci Identities as Binomial Sums</a>, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876. Mathematical Reviews, MR2959001. Zentralblatt MATH, Zbl 1255.05003.
%H Mohammad K. Azarian, <a href="http://www.m-hikari.com/ijcms/ijcms-2012/41-44-2012/azarianIJCMS41-44-2012.pdf">Fibonacci Identities as Binomial Sums II</a>, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.
%H S. B. Ekhad and D. Zeilberger, <a href="http://arxiv.org/abs/1303.5306">How To Generate As Many Somos-Like Miracles as You Wish</a>, arXiv preprint arXiv:1303.5306 [math.CO], 2013.
%H John Gill and Matthew Miller, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/19-1/gill.pdf">Newton's Method and Ratios of Fibonacci Numbers</a>, Fibonacci Quarterly, 19(1):1-3, February 1981.
%H H. Hu, Z.-W. Sun and J.-X. Liu, <a href="http://pweb.nju.edu.cn/zwsun/39f.pdf">Reciprocal sums of second order recurrent sequences</a>, Fib. Quart. 39(2001), no. 3, 214-220.
%H Hideyuki Ohtsuka, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Problems/AdvFeb2015.pdf">Problem H-767</a>, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 53, No. 1 (2015), p. 88; <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Problems/February2017advanced.pdf">Nested Radicals and Fibonacci Numbers</a>, Solution to Problem H-767 by the proposer, ibid., Vol. 55, No. 1 (2017), pp. 90-91.
%F a(n) = a(n-1)*A001566(n-2). - Joe Keane (jgk(AT)jgk.org), May 31 2002
%F Sum_{n>=0} 1/a(n) = (1/2)*(7-sqrt(5)). - _Benoit Cloitre_, Jan 26 2003
%F 1/phi^2 = (0.6180339...)^2 = 2/(3+sqrt(5)) = Sum_{n>=2} 1/a(n) = 1/3 + 1/21 + 1/987 + 1/2178309 + ... - _Gary W. Adamson_, Jun 12 2003
%F From _Artur Jasinski_, Oct 05 2008: (Start)
%F a(n) = (G^(2^n) - (1 - G)^(2^n))/sqrt(5) where G = GoldenRatio = (1 + sqrt(5))/2.
%F a(n) = sqrt(4/5)*cosh((2^n)*arccosh(sqrt(5/4))). (End)
%F a(n) = (a(n-1)^3 / a(n-2)^2 + 5 * a(n-1) * a(n-2)^2) / 2, for n > 1. - _Lee A. Newberg_, Jul 20 2010
%F Recurrence equations from _Peter Bala_, Oct 30 2013: (Start)
%F a(n)/a(n-1) = (a(n-1)/a(n-2))^2 - 2 for n >= 3.
%F a(n)/a(n-1) = 5*a(n-2)^2 + 2 for n >= 3.
%F a(n) = a(n-1)*sqrt(5*a(n-1)^2 + 4) for n >= 2. (End)
%F 0 = a(n)^2 * ( a(n+3) - 2*a(n+2) ) - a(n+1)*a(n+2) * ( a(n+2) - 2*a(n+1)) if n > 0. - _Michael Somos_, Mar 24 2014
%F From _Amiram Eldar_, Dec 02 2021: (Start)
%F a(n) = A000045(A000079(n)).
%F Limit_{n->oo} sqrt(a(1)^2 + sqrt(a(2)^2 + sqrt(a(3)^2 + ... + sqrt(a(n))))) = 3 (Ohtsuka, 2015). (End)
%F a(n) = Product_{k=0..n-1} L(2^k), for n >= 1, where L(k) is the k-th Lucas number (A000032). - _Amiram Eldar_, Mar 30 2023
%e Let b = 1/sqrt(5) and x = (1/2)*(3 - sqrt(5)). We have the following Pierce expansions to base b:
%e x = b/1 - b^2/(1*3) + b^3/(1*3*21) - b^4/(1*3*21*987) + ....
%e x^2 = b/3 - b^2/(3*21) + b^3/(3*21*987) - b^4/(3*21*987*2178309) + ....
%e x^4 = b/21 - b^2/(21*987) + b^3/(21*987*2178309) - ....
%e x^8 = b/987 - b^2/(987*2178309) + .... - _Peter Bala_, Oct 30 2013
%p a:= n-> (<<0|1>, <1|1>>^(2^n))[1,2]:
%p seq(a(n), n=0..10); # _Alois P. Heinz_, Nov 21 2014
%t Table[ Fibonacci[ 2^n ], {n, 0, 9} ]
%t G = (1 + Sqrt[5])/2; Table[Expand[(G^(2^n) - (1 - G)^(2^n))/Sqrt[5]], {n, 1, 7}] (* _Artur Jasinski_, Oct 05 2008 *)
%t Table[Round[(4/5)^(1/2)*Cosh[2^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 10}] (* _Artur Jasinski_, Oct 05 2008 *)
%o (Magma) [Fibonacci(2^n): n in [0..10]]; // _Vincenzo Librandi_, Mar 25 2014
%o (PARI) a(n)=fibonacci(2^n) \\ _Charles R Greathouse IV_, Oct 03 2016
%Y Cf. A000032, A000045, A000079, A054783, A001566, A071579, A230338.
%K nonn,changed
%O 0,3
%A _Robert G. Wilson v_, Jan 16 2001