login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071579
a(n) = 2*a(n-1)*A002812(n-1), starting a(0)=1.
8
1, 4, 56, 10864, 408855776, 579069776145402304, 1161588808526051807570761628582646656, 4674072680304961790168962360144614650442718636276775741658113370728376064
OFFSET
0,2
COMMENTS
Also the denominators of the convergents to sqrt(3) using Newton's recursion x = (3/x+x)/2. - Cino Hilliard, Sep 28 2008
For n>1, Egyptian fraction of 2-sqrt(3): 2-sqrt(3) = 1/4 + 1/56 + 1/10864 + 1/408855776 + ... - Simon Plouffe, Feb 20 2011
The sequence satisfies the Pell equation A002812(n)^2-3*a(n)^2 = 1. - Vincenzo Librandi, Dec 19 2011
From Peter Bala, Oct 30 2013: (Start)
Apart from giving the numerators in the Engel series representation of 2 - sqrt(3), as stated above by Plouffe, this sequence is also a Pierce expansion of the real number x = 2 - sqrt(3) to the base b := 1/sqrt(12) (see A058635 for a definition of this term).
The associated series representation begins 2 - sqrt(3) = b/1 - b^2/(1*4) + b^3/(1*4*56) - b^4/(1*4*56*10864) + .... Cf. A230338.
More generally, for n >= 0, the sequence [a(n), a(n+1), a(n+2), ...] gives a Pierce expansion of (2 - sqrt(3))^(2^n) to the base b = 1/sqrt(12). Some examples are given below. (End)
LINKS
Eric Weisstein's World of Mathematics, Newton's Iteration.
Doron Zeilberger, Another Book of Somos-Like Miracles, Prop. Number, 2; Local copy.
FORMULA
a(n) = 1/sqrt(12)*( (2 + sqrt(3))^2^n - (2 - sqrt(3))^2^n ) = A001353(2^n).
a(n) = 2*a(n-1)*(6*a(n-2)^2+1). - Max Alekseyev, Apr 19 2006
Recurrence equations:
a(n)/a(n-1) = (a(n-1)/a(n-2))^2 - 2 for n >= 2.
a(n) = a(n-1)*sqrt(12*a(n-1)^2 + 4) for n >= 1. - Peter Bala, Oct 30 2013
0 = 6*a(n)^2*a(n+2) - 6*a(n+1)^3 - 2*a(n+1) + a(n+2) for n>=1. - Michael Somos, Dec 05 2016
0 = a(n)^2*(2*a(n+1) + a(n+2)) - a(n+1)^3 for n>=1. - Michael Somos, Dec 05 2016
a(n) = A001353(2^n). - Michael Somos, Jul 29 2024
EXAMPLE
Let b = 1/sqrt(12) and x = 2 - sqrt(3). We have the following Pierce expansions to base b:
x = b/1 - b^2/(1*4) + b^3/(1*4*56) - b^4/(1*4*56*10864) + b^5/(1*4*56*10864*408855776) - ....
x^2 = b/4 - b^2/(4*56) + b^3/(4*56*10864) - b^4/(4*56*10864*408855776) + ....
x^4 = b/56 - b^2/(56*10864) + b^3/(56*10864*408855776) - ....
x^8 = b/10864 - b^2/(10864*408855776) + .... - Peter Bala, Oct 30 2013
MATHEMATICA
a[ n_] := If[n<0, 0, Coefficient[PolynomialMod[x^2^n, x^2 - 4*x + 1], x]]; (* Michael Somos, Jul 29 2024 *)
a[ n_] := If[n<1, Boole[n==0], a[n] = a[n-1]*Sqrt[12*a[n-1]^2 + 4] ]; (* Michael Somos, Jul 29 2024 *)
PROG
(PARI) g(n, p) = x=1; for(j=1, p, x=(n/x+x)/2; print1(denominator(x)", "))
(PARI) {a(n) = if(n<0, 0, imag((2 + quadgen(12))^2^n))}; /* Michael Somos, Jul 29 2024 */
(PARI) {a(n) = if(n<0, 0, polcoef(lift(Mod(x^2^n, x^2 - 4*x + 1)), 1))}; /* Michael Somos, Jul 29 2024 */
g(3, 8) \\ Cino Hilliard, Sep 28 2008
(Magma) I:=[1, 4]; [n le 2 select I[n] else 2*Self(n-1)*(6*Self(n-2)^2+1): n in [1..8]]; // Vincenzo Librandi, Dec 19 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org), May 31 2002
STATUS
approved