login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071579 a(n) = 2*a(n-1)*A002812(n-1), starting a(0)=1. 8
1, 4, 56, 10864, 408855776, 579069776145402304, 1161588808526051807570761628582646656, 4674072680304961790168962360144614650442718636276775741658113370728376064 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also the denominators of the convergents to sqrt(3) using Newton's recursion x = (3/x+x)/2. - Cino Hilliard, Sep 28 2008

For n>1, egyptian fraction of 2-sqrt(3): 2-sqrt(3) = 1/4 + 1/56 + 1/10864 + 1/408855776 + ... - Simon Plouffe, Feb 20 2011

The sequence satisfies the Pell equation A002812(n)^2-3*a(n)^2 = 1. - Vincenzo Librandi, Dec 19 2011

From Peter Bala, Oct 30 2013: (Start)

Apart from giving the numerators in the Engel series representation of 2 - sqrt(3), as stated above by Plouffe, this sequence is also a Pierce expansion of the real number x = 2 - sqrt(3) to the base b := 1/sqrt(12) (see A058635 for a definition of this term).

The associated series representation begins 2 - sqrt(3) = b/1 - b^2/(1*4) + b^3/(1*4*56) - b^4/(1*4*56*10864) + .... Cf. A230338.

More generally, for n >= 0, the sequence [a(n), a(n+1), a(n+2), ...] gives a Pierce expansion of (2 - sqrt(3))^(2^n) to the base b = 1/sqrt(12). Some examples are given below. (End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10

Eric Weisstein's World of Mathematics, Newton's Iteration

Eric Weisstein's World of Mathematics, Newton's Iteration

Doron Zeilberger, Another Book of Somos-Like Miracles, Prop. Number, 2

FORMULA

a(n) = 1/sqrt(12)*( (2 + sqrt(3))^2^n - (2 - sqrt(3))^2^n ) = A001353(2^n).

a(n) = 2*a(n-1)*(6*a(n-2)^2+1). - Max Alekseyev, Apr 19 2006

Recurrence equations:

a(n)/a(n-1) = (a(n-1)/a(n-2))^2 - 2 for n >= 2.

a(n) = a(n-1)*sqrt(12*a(n-1)^2 + 4) for n >= 1. - Peter Bala, Oct 30 2013

0 = 6*a(n)^2*a(n+2) - 6*a(n+1)^3 - 2*a(n+1) + a(n+2) for n>=1. - Michael Somos, Dec 05 2016

0 = a(n)^2*(2*a(n+1) + a(n+2)) - a(n+1)^3 for n>=1. - Michael Somos, Dec 05 2016

EXAMPLE

Let b = 1/sqrt(12) and x = 2 - sqrt(3). We have the following Pierce expansions to base b:

x = b/1 - b^2/(1*4) + b^3/(1*4*56) - b^4/(1*4*56*10864) + b^5/(1*4*56*10864*408855776) - ....

x^2 = b/4 - b^2/(4*56) + b^3/(4*56*10864) - b^4/(4*56*10864*408855776) + ....

x^4 = b/56 - b^2/(56*10864) + b^3/(56*10864*408855776) - ....

x^8 = b/10864 - b^2/(10864*408855776) + .... - Peter Bala, Oct 30 2013

PROG

(PARI) g(n, p) = x=1; for(j=1, p, x=(n/x+x)/2; print1(denominator(x)", "))

g(3, 8) \\ Cino Hilliard, Sep 28 2008

(MAGMA) I:=[1, 4]; [n le 2 select I[n] else 2*Self(n-1)*(6*Self(n-2)^2+1): n in [1..8]]; // Vincenzo Librandi, Dec 19 2011

CROSSREFS

Cf. A002812, A001353. A058635, A230338.

Sequence in context: A056075 A000315 A080984 * A060497 A092273 A193745

Adjacent sequences:  A071576 A071577 A071578 * A071580 A071581 A071582

KEYWORD

nonn,easy,changed

AUTHOR

Joe Keane (jgk(AT)jgk.org), May 31 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 14:38 EST 2016. Contains 278945 sequences.