login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002812 a(n) = 2*a(n-1)^2 - 1, starting a(0) = 2.
(Formerly M1817 N0720)
18
2, 7, 97, 18817, 708158977, 1002978273411373057, 2011930833870518011412817828051050497, 8095731360557835890888779535060256832479295062749579257164654370487894017 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
2^p-1 is prime iff it divides a(p-2), since a(n) = A003010(n)/2, where A003010 is the Lucas-Lehmer sequence used for Mersenne number primality testing. - M. F. Hasler, Mar 09 2007
From Cino Hilliard, Sep 28 2008: (Start)
Also numerators of the convergents to the square root of 3 using the following recursion for initial x = 1: x1=x, x=3/x, x=(x+x1)/2.
This recursion was derived by experimenting with polynomial recursions of the form x = -a(0)/(a(n-1)x^(n-1) + ... + a(1)) in an effort to find a root for the polynomial a(n)x^n + a(n-1)x^(n-1) + ... + a(0). The process was hit-and-miss until I introduced the averaging step described above. This method is equivalent to Newton's Method although derived somewhat differently. (End)
The sequence satisfies the Pell equation a(n)^2 - 3*A071579(n)^2 = 1. - Vincenzo Librandi, Dec 19 2011
From Peter Bala, Nov 2012: (Start)
The present sequence corresponds to the case x = 2 of the following general remarks. Let x > 1 and let alpha := {x + sqrt(x^2 - 1)}. Define a sequence a(n) (which depends on x) by setting a(n) = (1/2)*(alpha^(2^n) + (1/alpha)^(2^n)) for n >= 0. It is easy to verify that a(n) is a solution to the recurrence equation a(n+1) = 2*a(n)^2 - 1 with the initial condition a(0) = x.
The following algebraic identity is valid for x > 1:
sqrt(4*x^2 - 4)/(2*x + 1) = (1 - 1/(2*x))*sqrt(4*y^2 - 4)/(2*y + 1), where y = 2*x^2 - 1. Iterating the identity yields the product expansion sqrt(4*x^2 - 4)/(2*x + 1) = Product_{n >= 0} (1 - 1/(2*a(n))). A second expansion is Product_{n >= 0} (1 + 1/a(n)) = sqrt((x + 1)/(x - 1)). See Mendes-France and van der Poorten. (End)
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 399.
E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
W. Sierpiński, Sur les développements systématiques des nombres en produits infinis, in Œuvres choisies, tome 1, PWN Editions scientifiques de Pologne, 1974.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Georg Cantor, Zwei Sätze über eine gewisse Zerlegung der Zahlen in unendliche Producte, Zeitschrift für Mathematik und Physik. Band 14, 1869, S. 152-158. (See page 155, II, error in the fourth term.)
E. Lucas, Nouveaux théorèmes d'arithmétique supérieure (annotated scanned copy)
M. Mendes France and A. J. van der Poorten, From geometry to Euler identities, Theoret. Comput. Sci., 65 (1989), 213-220.
Eric Weisstein's World of Mathematics, Newton's Iteration
FORMULA
a(n) = A001075(2^n).
a(n) = ((2+sqrt(3))^(2^n) + (2-sqrt(3))^(2^n))/2. - Bruno Berselli, Dec 20 2011
From Peter Bala, Nov 11 2012: (Start)
2*sqrt(3)/5 = Product_{n >= 0} (1 - 1/(2*a(n))).
sqrt(3) = Product_{n >= 0} (1 + 1/a(n)).
a(n) = (1/2)*A003010(n). (End)
a(n) = cos(2^n*arccos(2)). - Peter Luschny, Oct 12 2022
a(n) = A002531(2^(n+1)). - Robert FERREOL, Apr 13 2023
EXAMPLE
G.f. = 2 + 7*x + 97*x^2 + 18817*x^3 + 708158977*x^4 + ...
MAPLE
a:=n->((2+sqrt(3))^(2^n)+(2-sqrt(3))^(2^n))/2: seq(floor(a(n)), n=0..10); # Muniru A Asiru, Aug 12 2018
MATHEMATICA
Table[((2 + Sqrt[3])^2^n + (2 - Sqrt[3])^2^n)/2, {n, 0, 7}] (* Bruno Berselli, Dec 20 2011 *)
NestList[2#^2-1&, 2, 10] (* Harvey P. Dale, May 04 2013 *)
a[ n_] := If[ n < 0, 0, ChebyshevT[2^n, 2]]; (* Michael Somos, Dec 06 2016 *)
PROG
(PARI) {a(n) = if( n<1, 2 * (n==0), 2 * a(n-1)^2 - 1)}; /* Michael Somos, Mar 14 2004 */
(PARI) /* Roots by recursion. Find first root of ax^2 + b^x + c */
rroot2(a, b, c, p) = { local(x=1, x1=1, j); for(j=1, p, x1=x; x=-c/(a*x+b); x=(x1+x)/2; /* Let x be the average of the last 2 values */ print1(numerator(x)", "); ); } \\ Cino Hilliard, Sep 28 2008
(Magma) I:=[2]; [n le 1 select I[n] else 2*Self(n-1)^2-1: n in [1..8]]; // Vincenzo Librandi, Dec 19 2011
(GAP) a:=[2];; for n in [2..10] do a[n]:=2*a[n-1]^2-1; od; a; # Muniru A Asiru, Aug 12 2018
CROSSREFS
Cf. A177879 (lpf).
Sequence in context: A240696 A102344 A087589 * A219280 A277434 A322642
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 03:33 EDT 2024. Contains 370952 sequences. (Running on oeis4.)