login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002815
a(n) = n + Sum_{k=1..n} pi(k), where pi() = A000720.
(Formerly M2523 N0996)
4
0, 1, 3, 6, 9, 13, 17, 22, 27, 32, 37, 43, 49, 56, 63, 70, 77, 85, 93, 102, 111, 120, 129, 139, 149, 159, 169, 179, 189, 200, 211, 223, 235, 247, 259, 271, 283, 296, 309, 322, 335, 349, 363, 378, 393, 408, 423, 439, 455, 471
OFFSET
0,3
REFERENCES
H. Brocard, Reply to Query 1421, Nombres premiers dans une suite de différences, L'Intermédiaire des Mathématiciens, 7 (1900), 135-137.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = A046992(n) + n for n > 0. - Reinhard Zumkeller, Feb 25 2012
Conjectured g.f.: (Sum_{N>=1} x^A008578(N))/(1-x)^2 = (x + x^2 + x^3 + x^5 + x^7 + x^11 + x^13 + ...)/(1-x)^2. - L. Edson Jeffery, Nov 25 2013
MATHEMATICA
Table[n + Sum[PrimePi[k], {k, 1, n}], {n, 0, 50}]
Module[{nn=50, pp}, pp=Accumulate[PrimePi[Range[0, nn]]]; Total/@ Thread[ {Range[ 0, nn], pp}]] (* This program is significantly faster than the program above. *) (* Harvey P. Dale, Jan 03 2013 *)
PROG
(Haskell)
a002815 0 = 0
a002815 n = a046992 n + toInteger n -- Reinhard Zumkeller, Feb 25 2012
(Python)
from sympy import primerange
def A002815(n): return n+(n+1)*len(p:=list(primerange(n+1)))-sum(p) # Chai Wah Wu, Jan 01 2024
(PARI) a(n) = my(p=primes([0, n])); n + (n+1)*#p - vecsum(p); \\ Ruud H.G. van Tol, Feb 16 2024
CROSSREFS
Sequence in context: A280944 A330321 A205726 * A342711 A109512 A025205
KEYWORD
nonn,nice,easy
STATUS
approved