login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002815 a(n) = n + Sum_{k=1..n} pi(k), where pi() = A000720.
(Formerly M2523 N0996)
4
0, 1, 3, 6, 9, 13, 17, 22, 27, 32, 37, 43, 49, 56, 63, 70, 77, 85, 93, 102, 111, 120, 129, 139, 149, 159, 169, 179, 189, 200, 211, 223, 235, 247, 259, 271, 283, 296, 309, 322, 335, 349, 363, 378, 393, 408, 423, 439, 455, 471 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = A046992(n) + n for n > 0. [Reinhard Zumkeller, Feb 25 2012]

REFERENCES

H. Brocard, Reply to Query 1421, Nombres premiers dans une suite de differences, L'Intermédiaire des Mathématiciens, 7 (1900), 135-137.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

FORMULA

Conjectured g.f.: (Sum_{N>=1} x^A008578(N))/(1-x)^2 = (x + x^2 + x^3 + x^5 + x^7 + x^11 + x^13 + ...)/(1-x)^2. - L. Edson Jeffery, Nov 25 2013

MATHEMATICA

Table[n + Sum[PrimePi[k], {k, 1, n}], {n, 0, 50}]

Module[{nn=50, pp}, pp=Accumulate[PrimePi[Range[0, nn]]]; Total/@ Thread[ {Range[ 0, nn], pp}]] (* This program is significantly faster than the program above. *) (* Harvey P. Dale, Jan 03 2013 *)

PROG

(Haskell)

a002815 0 = 0

a002815 n = a046992 n + toInteger n  -- Reinhard Zumkeller, Feb 25 2012

CROSSREFS

Cf. A000720.

Sequence in context: A280944 A330321 A205726 * A342711 A109512 A025205

Adjacent sequences:  A002812 A002813 A002814 * A002816 A002817 A002818

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane, Robert G. Wilson v, Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 01:36 EDT 2021. Contains 342934 sequences. (Running on oeis4.)