login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002815 a(n) = n + Sum_{k=1..n} pi(k), where pi() = A000720.
(Formerly M2523 N0996)
4
0, 1, 3, 6, 9, 13, 17, 22, 27, 32, 37, 43, 49, 56, 63, 70, 77, 85, 93, 102, 111, 120, 129, 139, 149, 159, 169, 179, 189, 200, 211, 223, 235, 247, 259, 271, 283, 296, 309, 322, 335, 349, 363, 378, 393, 408, 423, 439, 455, 471 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
REFERENCES
H. Brocard, Reply to Query 1421, Nombres premiers dans une suite de differences, L'Intermédiaire des Mathématiciens, 7 (1900), 135-137.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(n) = A046992(n) + n for n > 0. - Reinhard Zumkeller, Feb 25 2012
Conjectured g.f.: (Sum_{N>=1} x^A008578(N))/(1-x)^2 = (x + x^2 + x^3 + x^5 + x^7 + x^11 + x^13 + ...)/(1-x)^2. - L. Edson Jeffery, Nov 25 2013
MATHEMATICA
Table[n + Sum[PrimePi[k], {k, 1, n}], {n, 0, 50}]
Module[{nn=50, pp}, pp=Accumulate[PrimePi[Range[0, nn]]]; Total/@ Thread[ {Range[ 0, nn], pp}]] (* This program is significantly faster than the program above. *) (* Harvey P. Dale, Jan 03 2013 *)
PROG
(Haskell)
a002815 0 = 0
a002815 n = a046992 n + toInteger n -- Reinhard Zumkeller, Feb 25 2012
CROSSREFS
Cf. A000720.
Sequence in context: A280944 A330321 A205726 * A342711 A109512 A025205
KEYWORD
nonn,nice,easy,changed
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 04:47 EDT 2023. Contains 365722 sequences. (Running on oeis4.)