login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002815 a(n) = n + Sum_{k=1..n} pi(k), where pi() = A000720.
(Formerly M2523 N0996)
4
0, 1, 3, 6, 9, 13, 17, 22, 27, 32, 37, 43, 49, 56, 63, 70, 77, 85, 93, 102, 111, 120, 129, 139, 149, 159, 169, 179, 189, 200, 211, 223, 235, 247, 259, 271, 283, 296, 309, 322, 335, 349, 363, 378, 393, 408, 423, 439, 455, 471 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

H. Brocard, Reply to Query 1421, Nombres premiers dans une suite de differences, L'Intermédiaire des Mathématiciens, 7 (1900), 135-137.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = A046992(n) + n for n > 0. [Reinhard Zumkeller, Feb 25 2012]

Conjectured g.f.: (Sum_{N>=1} x^A008578(N))/(1-x)^2 = (x + x^2 + x^3 + x^5 + x^7 + x^11 + x^13 + ...)/(1-x)^2. - L. Edson Jeffery, Nov 25 2013

MATHEMATICA

Table[n + Sum[PrimePi[k], {k, 1, n}], {n, 0, 50}]

Module[{nn=50, pp}, pp=Accumulate[PrimePi[Range[0, nn]]]; Total/@ Thread[ {Range[ 0, nn], pp}]] (* This program is significantly faster than the program above. *) (* Harvey P. Dale, Jan 03 2013 *)

PROG

(Haskell)

a002815 0 = 0

a002815 n = a046992 n + toInteger n  -- Reinhard Zumkeller, Feb 25 2012

CROSSREFS

Cf. A000720.

Sequence in context: A280944 A330321 A205726 * A342711 A109512 A025205

Adjacent sequences:  A002812 A002813 A002814 * A002816 A002817 A002818

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane, Robert G. Wilson v, Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 10:17 EDT 2022. Contains 354913 sequences. (Running on oeis4.)