The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230338 Recurrence equation: a(0) = 1 and a(n) = a(n-1)*sqrt(21*a(n-1)^2 + 4) for n >= 1. 3
 1, 5, 115, 60605, 16831644835, 1298263252133919638045, 7723873922612696850892381990249713732303715, 273388347343560518533856033712658350781293745092679040607342582493129736504927611387805 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For integer N, the recurrence equation a(n) = a(n-1)*sqrt((N^2 - 4)*a(n-1)^2 + 4) for n >= 1, with starting value a(0) = 1, produces an integer sequence. The present sequence is the case N = 5. Cf. A000079 (case N = 2), A058635 (case N = 3) and A071579 (case N = 4). Sequence of numerators in the Engel series representation of 1/2*(7 - sqrt(21)) = 1 + 1/5 + 1 /115 + 1/60605 + .... The corresponding Engel expansion is A003487. The sequence also has a description as a Pierce expansion of the quadratic irrational 1/2*(5 - sqrt(21)) to the base b := 1/sqrt(21) (see A058635 for a definition of this term). The associated Pierce series representation of 1/2*(5 - sqrt(21)) to the base b begins 1/2*(5 - sqrt(21)) = b/1 - b^2/(1*5) + b^3/(1*5*115) - b^4/(1*5*115*60605) + .... More generally, for n >= 0, the sequence [a(n), a(n+1), a(n+2), ...] gives a Pierce expansion of ( 1/2*(5 - sqrt(21)) )^(2^n) to the base b = 1/sqrt(21). Some examples are given below. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10 FORMULA a(n) = 1/sqrt(21)*( alpha^(2^n) - (1/alpha)^(2^n) ), where alpha = 1/2*(5 + sqrt(21)). a(n) = product {k = 0..n-1} A003487(k). Defining recurrence equation: a(0) = 1 and a(n) = a(n-1)*sqrt(21*a(n-1)^2 + 4) for n >= 1. Other recurrence equations: a(0) = 1, a(1) = 5 and a(n)/a(n-1) = (a(n-1)/a(n-2))^2 - 2 for n >= 2. a(0) = 1, a(1) = 5 and a(n)/a(n-1) = 21*a(n-2)^2 + 2 for n >= 2. a(n) = A004254(2^n). - Michael Somos, Dec 06 2016 EXAMPLE Let b = 1/sqrt(21) and x = 1/2*(5 - sqrt(21)). We have the following Pierce expansions to base b: x = b/1 - b^2/(1*5) + b^3/(1*5*115) - b^4/(1*5*115*60605) + b^5/(1*5*115*60605*16831644835) - .... x^2 = b/5 - b^2/(5*115) + b^3/(5*115*60605) - b^4/(5*115*60605*16831644835) + .... x^4 = b/115 - b^2/(115*60605) + b^3/(115*60605*16831644835) - .... x^8 = b/60605 - b^2/(60605*16831644835) + .... MATHEMATICA a[n_] := a[n - 1]*Sqrt[21 a[n - 1]^2 + 4]; a = 1; Array[a, 8, 0] (* Robert G. Wilson v, Mar 19 2014 *) a[ n_] := If[ n < 0, 0, ChebyshevU[2^n - 1, 5/2]]; (* Michael Somos, Dec 06 2016 *) PROG (PARI) a(n) = if( n<0, 0, imag( (5 + quadgen(84))^2^n) / 2^(2^n - 1)); /* Michael Somos, Dec 06 2016 */ CROSSREFS Cf. A003487, A004254, A058635, A071579. Sequence in context: A109057 A245105 A080988 * A156514 A319392 A268606 Adjacent sequences: A230335 A230336 A230337 * A230339 A230340 A230341 KEYWORD nonn,easy AUTHOR Peter Bala, Oct 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 30 08:48 EST 2023. Contains 359942 sequences. (Running on oeis4.)