login
A319392
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*k!*n^k.
4
1, 0, 5, 116, 4785, 307024, 28435285, 3598112580, 596971515329, 125802906617600, 32834740225688901, 10399056510149276980, 3929349957207906673585, 1746371472945523953503376, 901944505258819679842017365, 535692457387043907059336566724, 362573376628272441934460817960705
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * [x^n] exp(-x)/(1 - n*x).
a(n) = exp(-1/n)*n^n*Gamma(n+1,-1/n) for n > 0, where Gamma(a,x) is the incomplete gamma function.
a(n) ~ n! * n^n. - Vaclav Kotesovec, Jun 09 2019
MAPLE
b:= proc(n, k) option remember;
`if`(n=0, 1, k*n*b(n-1, k)+(-1)^n)
end:
a:= n-> b(n$2):
seq(a(n), n=0..17); # Alois P. Heinz, May 07 2020
MATHEMATICA
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! n^k, {k, 0, n}], {n, 16}]]
Table[n! SeriesCoefficient[Exp[-x]/(1 - n x), {x, 0, n}], {n, 0, 16}]
Table[(-1)^n HypergeometricPFQ[{1, -n}, {}, n], {n, 0, 16}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*k!*n^k); \\ Michel Marcus, Sep 18 2018
CROSSREFS
Main diagonal of A320032.
Sequence in context: A080988 A230338 A156514 * A268606 A006221 A265977
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 18 2018
STATUS
approved