login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277452
a(n) = Sum_{k=0..n} binomial(n,k) * n^k * k!.
7
1, 2, 13, 226, 7889, 458026, 39684637, 4788052298, 766526598721, 157108817646514, 40104442275129101, 12472587843118746322, 4641978487740740993233, 2036813028164774540010266, 1040451608604560812273060189, 612098707457003526384666111226
OFFSET
0,2
LINKS
FORMULA
a(n) = exp(1/n) * n^n * Gamma(n+1, 1/n).
a(n) ~ n^n * n!.
a(n) = n! * [x^n] exp(x)/(1 - n*x). - Ilya Gutkovskiy, Sep 18 2018
a(n) = floor(n^n*n!*exp(1/n)), n > 0. - Peter McNair, Dec 20 2021
MAPLE
a := n -> simplify(hypergeom([1, -n], [], -n)):
seq(a(n), n=0..15); # Peter Luschny, Oct 03 2018
# second Maple program:
b:= proc(n, k) option remember;
1 + `if`(n>0, k*n*b(n-1, k), 0)
end:
a:= n-> b(n$2):
seq(a(n), n=0..17); # Alois P. Heinz, May 09 2020
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*n^k*k!, {k, 0, n}], {n, 1, 20}]}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k) * n^k * k!); \\ Michel Marcus, Sep 18 2018
CROSSREFS
Main diagonal of A320031.
Sequence in context: A255882 A015196 A236903 * A268703 A373871 A369799
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 16 2016
STATUS
approved