login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320031
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the e.g.f. exp(x)/(1 - k*x).
4
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 79, 65, 1, 1, 6, 41, 226, 633, 326, 1, 1, 7, 61, 493, 2713, 6331, 1957, 1, 1, 8, 85, 916, 7889, 40696, 75973, 13700, 1, 1, 9, 113, 1531, 18321, 157781, 732529, 1063623, 109601, 1, 1, 10, 145, 2374, 36745, 458026, 3786745, 15383110, 17017969, 986410, 1
OFFSET
0,5
LINKS
FORMULA
E.g.f. of column k: exp(x)/(1 - k*x).
A(n,k) = Sum_{j=0..n} binomial(n,j)*j!*k^j.
A(n,k) = hypergeom_2F0([1, -n], [], -k).
A(n,k) = 1 + [n > 0] * k * n * A(n-1,k). - Alois P. Heinz, May 09 2020
A(n,k) = floor(n!*k^n*exp(1/k)), k > 0, n + k > 1. - Peter McNair, Dec 20 2021
From Werner Schulte, April 14 2024: (Start)
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L = A371898, i.e., A(n, k) = Sum_{i=0..k} binomial(k, i) * A371898(n, i).
Conjecture: E.g.f. of row n is exp(x) * (Sum_{k=0..n} A371898(n, k) * x^k / k!). (End)
EXAMPLE
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (2*k^2 + 2*k + 1)*x^2/2! + (6*k^3 + 6*k^2 + 3*k + 1)*x^3/3! + (24*k^4 + 24*k^3 + 12*k^2 + 4*k + 1)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 5, 13, 25, 41, 61, ...
1, 16, 79, 226, 493, 916, ...
1, 65, 633, 2713, 7889, 18321, ...
1, 326, 6331, 40696, 157781, 458026, ...
MAPLE
A := (n, k) -> simplify(hypergeom([1, -n], [], -k)):
for n from 0 to 5 do seq(A(n, k), k=0..8) od; # Peter Luschny, Oct 03 2018
# second Maple program:
A:= proc(n, k) option remember;
1 + `if`(n>0, k*n*A(n-1, k), 0)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, May 09 2020
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[Exp[x]/(1 - k x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, HypergeometricPFQ[{1, -n}, {}, -k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..6 give A000012, A000522, A010844, A010845, A056545, A056546, A056547.
Main diagonal gives A277452.
Sequence in context: A323206 A340968 A128198 * A123349 A123352 A114163
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Oct 03 2018
STATUS
approved