login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010845
a(n) = 3*n*a(n-1) + 1, a(0) = 1.
12
1, 4, 25, 226, 2713, 40696, 732529, 15383110, 369194641, 9968255308, 299047659241, 9868572754954, 355268619178345, 13855476147955456, 581929998214129153, 26186849919635811886, 1256968796142518970529
OFFSET
0,2
COMMENTS
a(n)/(A000142*A000244) is an increasingly good approximation to cube root of e.
Related to Incomplete Gamma Function at 1/3. - Michael Somos, Mar 26 1999
For positive n, a(n) equals 3^n times the permanent of the n X n matrix with (4/3)'s along the main diagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From N. J. A. Sloane, Feb 06 2013
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
FORMULA
E.g.f.: exp(x)/(1-3*x).
a(n) = floor( n!*e^(1/3)*3^n ) = n! * (Sum_{k=0..n} 3^(n-k) / k!) = n! * (e^(1/3) * 3^n - Sum_{k>n} 3^(n-k) / k!). - Michael Somos, Mar 26 1999
a(n) = Sum_{k=0..n} P(n, k)*3^k. - Ross La Haye, Aug 29 2005
Binomial transform of A032031. - Carl Najafi, Sep 11 2011
Conjecture: a(n) +(-3*n-1)*a(n-1) +3*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 16 2014
a(n) = hypergeometric_U(1,n+2,1/3)/3. - Peter Luschny, Nov 26 2014
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x >= 0} (3*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 3*x) satisfies the differential equation (1 - 3*x)*y' = (4 - 3*x)*y. Mathar's recurrence above follows easily from this.
The sequence b(n) := (3^n)*n! also satisfies Mathar's recurrence with b(0) = 1, b(1) = 3. This leads to the continued fraction representation a(n) = (3^n)*n!*( 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/(3*n + 1) )))) for n >= 2. Taking the limit as n -> oo gives the continued fraction representation exp(1/3) = 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/((3*n + 1) - ... )))). Cf. A010844. (End)
EXAMPLE
1 + 4*x + 25*x^2 + 226*x^3 + 2713*x^4 + 40696*x^5 + 732529*x^6 + ...
MATHEMATICA
Table[ Gamma[ n, 1/3 ]*Exp[ 1/3 ]*3^(n-1), {n, 1, 24} ]
a[ n_] := If[ n<0, 0, Floor[ n! E^(1/3) 3^n ]] (* Michael Somos, Sep 04 2013 *)
Range[0, 20]! CoefficientList[Series[Exp[x]/(1 - 3 x), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 17 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * sum(k=0, n, 3^(n-k) / k!))} /* Michael Somos, Sep 04 2013 */
CROSSREFS
Cf. A000522, A010844, A056545, A056546, A056547 for analogs.
Sequence in context: A340337 A001247 A031152 * A087660 A121660 A118835
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better description and formulas from Michael Somos
More terms from James A. Sellers, Jul 04 2000
STATUS
approved