login
A001247
Squares of Bell numbers.
20
1, 1, 4, 25, 225, 2704, 41209, 769129, 17139600, 447195609, 13450200625, 460457244900, 17754399678409, 764214897046969, 36442551140059684, 1912574337188517025, 109833379421325769609, 6866586647633870998416, 465228769500062060333281
OFFSET
0,3
REFERENCES
C. M. Bender, D. C. Brody and B. K. Meister, Quantum Field Theory of Partitions, J. Math. Phys., 40,7 (1999), 3239-45.
LINKS
C. M. Bender et al., Combinatorics and Field theory, arXiv:quant-ph/0604164, 2006.
FORMULA
E.g.f.: exp(exp(x*(d_z) - 1))*(exp(exp(z) - 1)) |_{z = 0}, with the derivative operator d_z := d/dz. From equations (16) and (17) of Bender et al. (1999).
E.g.f.: exp(-2)*Sum(exp(exp(n*x))/n!, n = 0..infinity). - Vladeta Jovovic, Jan 31 2008
MAPLE
with(combinat): seq(bell(n)^2), n=0..17); # Zerinvary Lajos, Sep 21 2007
MATHEMATICA
Table[BellB[n, 1]^2, {n, 0, 17}] (* Zerinvary Lajos, Jul 16 2009 *)
PROG
(Sage) [(bell_number(n))^2 for n in range(0, 18)] # Zerinvary Lajos, May 15 2009
(Magma) [Bell(n)^2: n in [0..20]]; // Vincenzo Librandi, Jul 16 2013
CROSSREFS
Cf. A000110.
Sequence in context: A302587 A302608 A340337 * A031152 A010845 A087660
KEYWORD
nonn,easy
STATUS
approved