OFFSET
0,3
REFERENCES
C. M. Bender, D. C. Brody and B. K. Meister, Quantum Field Theory of Partitions, J. Math. Phys., 40,7 (1999), 3239-45.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
C. M. Bender et al., Combinatorics and Field theory, arXiv:quant-ph/0604164, 2006.
FORMULA
E.g.f.: exp(exp(x*(d_z) - 1))*(exp(exp(z) - 1)) |_{z = 0}, with the derivative operator d_z := d/dz. From equations (16) and (17) of Bender et al. (1999).
E.g.f.: exp(-2)*Sum(exp(exp(n*x))/n!, n = 0..infinity). - Vladeta Jovovic, Jan 31 2008
MAPLE
with(combinat): seq(bell(n)^2), n=0..17); # Zerinvary Lajos, Sep 21 2007
MATHEMATICA
Table[BellB[n, 1]^2, {n, 0, 17}] (* Zerinvary Lajos, Jul 16 2009 *)
PROG
(Sage) [(bell_number(n))^2 for n in range(0, 18)] # Zerinvary Lajos, May 15 2009
(Magma) [Bell(n)^2: n in [0..20]]; // Vincenzo Librandi, Jul 16 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved