Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Dec 07 2024 02:01:03
%S 1,4,25,226,2713,40696,732529,15383110,369194641,9968255308,
%T 299047659241,9868572754954,355268619178345,13855476147955456,
%U 581929998214129153,26186849919635811886,1256968796142518970529
%N a(n) = 3*n*a(n-1) + 1, a(0) = 1.
%C a(n)/(A000142*A000244) is an increasingly good approximation to cube root of e.
%C Related to Incomplete Gamma Function at 1/3. - _Michael Somos_, Mar 26 1999
%C For positive n, a(n) equals 3^n times the permanent of the n X n matrix with (4/3)'s along the main diagonal, and 1's everywhere else. - _John M. Campbell_, Jul 10 2011
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
%H Vincenzo Librandi, <a href="/A010845/b010845.txt">Table of n, a(n) for n = 0..200</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
%H Roland Bacher, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p7">Counting Packings of Generic Subsets in Finite Groups</a>, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
%H M. Z. Spivey and L. L. Steil, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html"> The k-Binomial Transforms and the Hankel Transform</a>, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
%F E.g.f.: exp(x)/(1-3*x).
%F a(n) = floor( n!*e^(1/3)*3^n ) = n! * (Sum_{k=0..n} 3^(n-k) / k!) = n! * (e^(1/3) * 3^n - Sum_{k>n} 3^(n-k) / k!). - _Michael Somos_, Mar 26 1999
%F a(n) = Sum_{k=0..n} P(n, k)*3^k. - _Ross La Haye_, Aug 29 2005
%F Binomial transform of A032031. - _Carl Najafi_, Sep 11 2011
%F Conjecture: a(n) +(-3*n-1)*a(n-1) +3*(n-1)*a(n-2)=0. - _R. J. Mathar_, Feb 16 2014
%F a(n) = hypergeometric_U(1,n+2,1/3)/3. - _Peter Luschny_, Nov 26 2014
%F From _Peter Bala_, Mar 01 2017: (Start)
%F a(n) = Integral_{x >= 0} (3*x + 1)^n*exp(-x) dx.
%F The e.g.f. y = exp(x)/(1 - 3*x) satisfies the differential equation (1 - 3*x)*y' = (4 - 3*x)*y. Mathar's recurrence above follows easily from this.
%F The sequence b(n) := (3^n)*n! also satisfies Mathar's recurrence with b(0) = 1, b(1) = 3. This leads to the continued fraction representation a(n) = (3^n)*n!*( 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/(3*n + 1) )))) for n >= 2. Taking the limit as n -> oo gives the continued fraction representation exp(1/3) = 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/((3*n + 1) - ... )))). Cf. A010844. (End)
%e 1 + 4*x + 25*x^2 + 226*x^3 + 2713*x^4 + 40696*x^5 + 732529*x^6 + ...
%t Table[ Gamma[ n, 1/3 ]*Exp[ 1/3 ]*3^(n-1), {n, 1, 24} ]
%t a[ n_] := If[ n<0, 0, Floor[ n! E^(1/3) 3^n ]] (* _Michael Somos_, Sep 04 2013 *)
%t Range[0, 20]! CoefficientList[Series[Exp[x]/(1 - 3 x), {x, 0, 20}], x] (* _Vincenzo Librandi_, Feb 17 2014 *)
%o (PARI) {a(n) = if( n<0, 0, n! * sum(k=0, n, 3^(n-k) / k!))} /* _Michael Somos_, Sep 04 2013 */
%Y Cf. A000522, A010844, A056545, A056546, A056547 for analogs.
%K nonn,easy
%O 0,2
%A _Simon Plouffe_
%E Better description and formulas from _Michael Somos_
%E More terms from _James A. Sellers_, Jul 04 2000