login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128198
Array read by antidiagonals. A scheme of arrangements: ArrScheme(k,n) = VarScheme(k,n-1) + k^n; ArrScheme(k,0) = 1. VarScheme(k,n) = (n*k+1)*(VarScheme(k,n-1) + k^n); VarScheme(k,0) = 1.
0
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 73, 65, 1, 1, 6, 41, 202, 527, 326, 1, 1, 7, 61, 433, 2101, 4775, 1957, 1
OFFSET
0,5
COMMENTS
The second row (k=1) is sequence A000522 counting the arrangements of a set with n elements and the third row (k=2) is the sequence A128196. Cf. the scheme of variations A128195.
EXAMPLE
Array begins:
[k=0] 1, 1, 1, 1, 1, 1, 1, 1
[k=1] 1, 2, 5, 16, 65, 326, 1957, 13700
[k=2] 1, 3, 13, 73, 527, 4775, 52589, 683785
[k=3] 1, 4, 25, 202, 2101, 27556, 441625, 8393062
[k=4] 1, 5, 41, 433, 5885, 101069, 2126545, 53180009
[k=5] 1, 6, 61, 796, 13361, 283706, 7391981, 229229536
[k=6] 1, 7, 85, 1321, 26395, 667651, 20743837, 767801905
[k=7] 1, 8, 113, 2038, 47237, 1386680, 50038129, 2152463090
MAPLE
VarScheme := (k, n) -> `if`(n=0, 1, (n*k+1)*(VarScheme(k, n-1)+k^n)); ArrScheme := (k, n) -> `if`(n=0, 1, VarScheme(k, n-1)+k^n);
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 02 2007
STATUS
approved