login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128195
a(n) = (2*n + 1)*(a(n - 1) + 2^n) for n >= 1, a(0) = 1.
5
1, 9, 65, 511, 4743, 52525, 683657, 10256775, 174369527, 3313030741, 69573667065, 1600194389599, 40004859842375, 1080131215965309, 31323805263469097, 971037963168557815, 32044252784564570583, 1121548847459764557925, 41497307356011298342553, 1618394986884440655806799
OFFSET
0,2
FORMULA
a(n) = A126062(2, n), double variations.
a(n) = (2n+1)!/(n! 2^n) Sum(k=0..n, 4^k*k!/(2k)!) [Gottfried Helms]
a(n) = 2^n (2n+1) Sum(k=0..n, Gamma(n+1/2)/Gamma(k+1/2))
a(n) = 2^(n+1) Gamma(n+3/2) Sum(k=0..n, 1/Gamma(k+1/2))
a(n) = A128196(n)*A005408(n)
a(n) = A128196(n+1)-A000079(n+1)
Recursive form:
a(n) = 2^(n+1)*v(n+1/2) with v(x) = if x <= 1 then x else x(v(x-1)+1).
a(n) = (2n+1)*(a(n-1)+2^n), a(0) = 1 [Wolfgang Thumser]
Note: The following constants will be used in the next formulas.
K = (1-exp(1)*Gamma(1/2,1))/Gamma(1/2)
M = sqrt(2)(1+exp(1)(Gamma(1/2)-Gamma(1/2,1)))
Generalized form: For x>0
a(x) = 2^(x+1)(x+1/2)(exp(1) Gamma(x+1/2,1) + K Gamma(x+1/2))
Asymptotic formula:
a(n) ~ 2^(n+5/2)*Gamma(n+3/2)
a(n) ~ (exp(1)+K)*2^(n+1)*(n+1/2)!
a(n) ~ M(2n+1)(2exp(-1)(n-1/(24*n+19/10*1/n)))^n
MAPLE
a := n -> `if`(n=0, 1, (2*n+1)*(a(n-1)+2^n));
MATHEMATICA
a[0] = 1; a[n_] := a[n] = (2*n+1)*(a[n-1] + 2^n); Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jul 29 2013 *)
CROSSREFS
Cf. A007526 (The number of variations), A128196 (A weighted sum of double factorials), A126062.
Sequence in context: A036731 A020234 A154996 * A103459 A339688 A100311
KEYWORD
easy,nonn
AUTHOR
Peter Luschny, Feb 26 2007
STATUS
approved