login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339688
a(n) = Sum_{d|n} 8^(d-1).
10
1, 9, 65, 521, 4097, 32841, 262145, 2097673, 16777281, 134221833, 1073741825, 8589967945, 68719476737, 549756076041, 4398046515265, 35184374186505, 281474976710657, 2251799830495305, 18014398509481985, 144115188210078217, 1152921504607109185
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} x^k / (1 - 8*x^k).
G.f.: Sum_{k>=1} 8^(k-1) * x^k / (1 - x^k).
a(n) ~ 8^(n-1). - Vaclav Kotesovec, Jun 05 2021
MATHEMATICA
Table[Sum[8^(d - 1), {d, Divisors[n]}], {n, 1, 21}]
nmax = 21; CoefficientList[Series[Sum[x^k/(1 - 8 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(PARI) a(n) = sumdiv(n, d, 8^(d-1)); \\ Michel Marcus, Dec 13 2020
(Magma)
A339688:= func< n | (&+[8^(d-1): d in Divisors(n)]) >;
[A339688(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
(SageMath)
def A339688(n): return sum(8^(k-1) for k in (1..n) if (k).divides(n))
[A339688(n) for n in range(1, 41)] # G. C. Greubel, Jun 25 2024
CROSSREFS
Column 8 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), this sequence (q=8), A339689 (q=9).
Sequence in context: A154996 A128195 A103459 * A100311 A259242 A120286
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 12 2020
STATUS
approved