|
|
A100311
|
|
Modulo 2 binomial transform of 8^n.
|
|
8
|
|
|
1, 9, 65, 585, 4097, 36873, 266305, 2396745, 16777217, 150994953, 1090519105, 9814671945, 68736258049, 618626322441, 4467856773185, 40210710958665, 281474976710657, 2533274790395913, 18295873486192705, 164662861375734345
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
8^n may be retrieved through 8^n = Sum_{k=0..n} (-1)^A010060(n-k) * (binomial(n,k) mod 2) * A100311(k).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=0..n} (binomial(n, k) mod 2)*8^k.
Conjecture: a(0)=1, a(n+1) = (a(n)*8) XOR a(n), where XOR is the bitwise exclusive-or operator. - Alex Ratushnyak, Apr 22 2012
Sum_{n>=0} 1/a(n)^r = Product_{k>=0} (1 + 1/(8^(2^k)+1)^r),
Sum_{n>=0} (-1)^A000120(n)/a(n)^r = Product_{k>=0} (1 - 1/(8^(2^k)+1)^r), where r>0 is a real number.
In particular,
Sum_{n>=0} 1/a(n) = Product_{k>=0} (1 + 1/(8^(2^k)+1)) = 1.1284805...;
Sum_{n>=0} (-1)^A000120(n)/a(n) = 7/8.
a(2^n) = 8^(2^n) + 1, n >= 0.
Note that analogs of Stephan's limit formulas (see Shevelev link) reduce to the relations:
a(2^t*n+2^(t-1)) = 63*(8^(2^(t-1)+1))/(8^(2^(t-1))-1) * a(2^t*n+2^(t-1)-2), t >= 2.
In particular, for t=2,3,4, we have the following formulas:
a(4*n+2) = 65 * a(4*n);
a(8*n+4) = 4097/65 * a(8*n+2);
a(16*n+8) = (16777217/266305) * a(16*n+6), etc. (End)
|
|
MATHEMATICA
|
|
|
PROG
|
(Python)
a=1
for i in range(33):
print(a, end=", ")
a = (a*8) ^ a
(Python)
def A100311(n): return sum((bool(~n&n-k)^1)<<3*k for k in range(n+1)) # Chai Wah Wu, May 02 2023
(Magma) [(&+[(Binomial(n, k) mod 2)*8^k: k in [0..n]]): n in [0..40]]; // G. C. Greubel, Jan 25 2023
(SageMath)
def A100311(n): return sum( (binomial(n, k)%2)*8^k for k in range(n+1))
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|