login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100312
Number of 3 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (10;0) and (01;1).
4
1, 8, 32, 104, 304, 832, 2176, 5504, 13568, 32768, 77824, 182272, 421888, 966656, 2195456, 4947968, 11075584, 24641536, 54525952, 120061952, 263192576, 574619648, 1249902592, 2709520384, 5855248384, 12616466432, 27111981056, 58116276224, 124285616128
OFFSET
0,2
COMMENTS
An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by the g.f. 2*x*y/(1-2*(x+y-x*y)).
LINKS
S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
FORMULA
G.f.: 1 + 8*x*(1-x)^2/(1-2*x)^3.
a(n) = 2^(n-1) * (n^2 + 5*n + 2).
a(n) = 8 * A049611(n) for n>0.
E.g.f.: (1 + 6*x + 2*x^2)*exp(2*x). - G. C. Greubel, Feb 01 2023
MATHEMATICA
Table[2^(n-1)*(n^2+5*n+2), {n, 0, 50}] (* G. C. Greubel, Feb 01 2023 *)
PROG
(PARI) vector(50, n, (n^2 + 5*n + 2) * 2^(n-1)) \\ Michel Marcus, Dec 01 2014
(Magma) [2^(n-1)*(n^2+5*n+2): n in [0..50]]; // G. C. Greubel, Feb 01 2023
(SageMath) [2^(n-1)*(n^2+5*n+2) for n in range(51)] # G. C. Greubel, Feb 01 2023
CROSSREFS
Cf. A049611, this sequence (m=3), A100313 (m=4).
Sequence in context: A071345 A178797 A357285 * A302507 A204643 A036393
KEYWORD
nonn,easy
AUTHOR
Sergey Kitaev, Nov 13 2004
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 21 2018
STATUS
approved