login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100310
Modulo 2 binomial transform of 7^n.
6
1, 8, 50, 400, 2402, 19216, 120100, 960800, 5764802, 46118416, 288240100, 2305920800, 13847054404, 110776435232, 692352720200, 5538821761600, 33232930569602, 265863444556816, 1661646528480100, 13293172227840800
OFFSET
0,2
COMMENTS
7^n may be retrieved through 7^n = Sum_{k=0..n} (-1)^A010060(n-k) * mod(binomial(n,k), 2) * a(k).
LINKS
Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization, arXiv:1011.6083 [math.NT], 2010-2012; J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29.
FORMULA
a(n) = Sum_{k=0..n} mod(binomial(n, k), 2)*7^k.
From Vladimir Shevelev, Dec 26-27 2013: (Start)
Sum_{n>=0} 1/a(n)^r = Product_{k>=0} (1 + 1/(7^(2^k)+1)^r),
Sum_{n>=0} (-1)^A000120(n)/a(n)^r = Product_{k>=0} (1 - 1/(7^(2^k)+1)^r), where r>0 is a real number.
In particular,
Sum_{n>=0} 1/a(n) = Product_{k>=0} (1 + 1/(7^(2^k)+1)) = 1.1479779...;
Sum_{n>=0} (-1)^A000120(n)/a(n) = 6/7.
a(2^n) = 7^(2^n)+1, n>=0.
Note that analogs of Stephan's limit formulas (see Shevelev link) reduce to the relations:
a(2^t*n+2^(t-1)) = 48*(7^(2^(t-1)+1))/(7^(2^(t-1))-1) * a(2^t*n+2^(t-1)-2), t>=2.
In particular, for t=2,3,4, we have the following formulas:
a(4*n+2) = 50 * a(4*n);
a(8*n+4) = 1201/25 * a(8*n+2);
a(16*n+8)= 2882401/60050 * a(16*n+6), etc. (End)
MATHEMATICA
a[n_]:= a[n]= Sum[7^k*Mod[Binomial[n, k], 2], {k, 0, n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Feb 01 2023 *)
PROG
(Magma) [(&+[7^k*(Binomial(n, k) mod 2): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Feb 01 2023
(SageMath)
def A100310(n): return sum(7^k*(binomial(n, k)%2) for k in range(n+1))
[A100310(n) for n in range(41)] # G. C. Greubel, Feb 01 2023
(Python)
def A100310(n): return sum((bool(~n&n-k)^1)*7**k for k in range(n+1)) # Chai Wah Wu, May 03 2023
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 06 2004
STATUS
approved