login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100307
Modulo 2 binomial transform of 3^n.
7
1, 4, 10, 40, 82, 328, 820, 3280, 6562, 26248, 65620, 262480, 538084, 2152336, 5380840, 21523360, 43046722, 172186888, 430467220, 1721868880, 3529831204, 14119324816, 35298312040, 141193248160, 282472589764, 1129890359056
OFFSET
0,2
COMMENTS
3^n may be retrieved through 3^n = Sum_{k=0..n} (-1)^A010060(n-k)*(binomial(n,k) mod 2)*a(k).
LINKS
Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization, arXiv:1011.6083 [math.NT], 2010-2012; J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29.
FORMULA
a(n) = Sum_{k=0..n} (binomial(n, k) mod 2)*3^k.
From Vladimir Shevelev, Dec 26-27 2013: (Start)
Sum_{n>=0} 1/a(n)^r = Product_{k>=0} (1 + 1/(3^(2^k)+1)^r),
Sum_{n>=0} (-1)^A000120(n)/a(n)^r = Product_{k>=0} (1 - 1/(3^(2^k)+1)^r), where r > 0 is a real number.
In particular,
Sum_{n>=0} 1/a(n) = Product_{k>=0} (1 + 1/(3^(2^k)+1)) = 1.391980...;
Sum_{n>=0} (-1)^A000120(n)/a(n) = 2/3.
a(2^n) = 3^(2^n)+1, n >= 0.
Note that analogs of Stephan's limit formulas (see Shevelev link) reduce to the relations:
a(2^t*n+2^(t-1)) = 8*(3^(2^(t-1)+1))/(3^(2^(t-1))-1) * a(2^t*n+2^(t-1)-2), t >= 2.
In particular, for t=2,3,4, we have the following formulas:
a(4*n+2) = 10 * a(4*n),
a(8*n+4) = (41/5) * a(8*n+2),
a(16*n+8) = (3281/410) * a(16*n+6), etc. (End)
From Tom Edgar, Oct 11 2015: (Start)
a(n) = Product_{b_j != 0} a(2^j) where n = Sum_{j>=0} b_j*2^j is the binary representation of n.
a(2*k+1) = 4*a(2*k). (End)
MATHEMATICA
Table[Sum[Mod[Binomial[n, k], 2]3^k, {k, 0, n}], {n, 0, 40}] (* Harvey P. Dale, Aug 28 2013 *)
PROG
(Sage) [sum((binomial(n, k)%2)*3^k for k in [0..n]) for n in [0..50]] # Tom Edgar, Oct 11 2015
(PARI) a(n) = subst(lift((Mod(1, 2)+'x)^n), 'x, 3); \\ Gheorghe Coserea, Jun 11 2016
(Magma) [(&+[3^k*(Binomial(n, k) mod 2): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Feb 03 2023
(Python)
def A100307(n): return sum((bool(~n&n-k)^1)*3**k for k in range(n+1)) # Chai Wah Wu, May 02 2023
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 06 2004
STATUS
approved