Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #57 May 03 2023 09:13:48
%S 1,4,10,40,82,328,820,3280,6562,26248,65620,262480,538084,2152336,
%T 5380840,21523360,43046722,172186888,430467220,1721868880,3529831204,
%U 14119324816,35298312040,141193248160,282472589764,1129890359056
%N Modulo 2 binomial transform of 3^n.
%C 3^n may be retrieved through 3^n = Sum_{k=0..n} (-1)^A010060(n-k)*(binomial(n,k) mod 2)*a(k).
%H Gheorghe Coserea, <a href="/A100307/b100307.txt">Table of n, a(n) for n = 0..200</a>
%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1011.6083">On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization</a>, arXiv:1011.6083 [math.NT], 2010-2012; J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29.
%F a(n) = Sum_{k=0..n} (binomial(n, k) mod 2)*3^k.
%F From _Vladimir Shevelev_, Dec 26-27 2013: (Start)
%F Sum_{n>=0} 1/a(n)^r = Product_{k>=0} (1 + 1/(3^(2^k)+1)^r),
%F Sum_{n>=0} (-1)^A000120(n)/a(n)^r = Product_{k>=0} (1 - 1/(3^(2^k)+1)^r), where r > 0 is a real number.
%F In particular,
%F Sum_{n>=0} 1/a(n) = Product_{k>=0} (1 + 1/(3^(2^k)+1)) = 1.391980...;
%F Sum_{n>=0} (-1)^A000120(n)/a(n) = 2/3.
%F a(2^n) = 3^(2^n)+1, n >= 0.
%F Note that analogs of Stephan's limit formulas (see Shevelev link) reduce to the relations:
%F a(2^t*n+2^(t-1)) = 8*(3^(2^(t-1)+1))/(3^(2^(t-1))-1) * a(2^t*n+2^(t-1)-2), t >= 2.
%F In particular, for t=2,3,4, we have the following formulas:
%F a(4*n+2) = 10 * a(4*n),
%F a(8*n+4) = (41/5) * a(8*n+2),
%F a(16*n+8) = (3281/410) * a(16*n+6), etc. (End)
%F From _Tom Edgar_, Oct 11 2015: (Start)
%F a(n) = Product_{b_j != 0} a(2^j) where n = Sum_{j>=0} b_j*2^j is the binary representation of n.
%F a(2*k+1) = 4*a(2*k). (End)
%t Table[Sum[Mod[Binomial[n,k],2]3^k,{k,0,n}],{n,0,40}] (* _Harvey P. Dale_, Aug 28 2013 *)
%o (Sage) [sum((binomial(n,k)%2)*3^k for k in [0..n]) for n in [0..50]] # _Tom Edgar_, Oct 11 2015
%o (PARI) a(n) = subst(lift((Mod(1,2)+'x)^n), 'x, 3); \\ _Gheorghe Coserea_, Jun 11 2016
%o (Magma) [(&+[3^k*(Binomial(n, k) mod 2): k in [0..n]]): n in [0..40]]; // _G. C. Greubel_, Feb 03 2023
%o (Python)
%o def A100307(n): return sum((bool(~n&n-k)^1)*3**k for k in range(n+1)) # _Chai Wah Wu_, May 02 2023
%Y Cf. A001316, A001317, A038183, A100308, A100309, A100310, A100311.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Dec 06 2004