login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302507
a(n) = 4*(3^n-1).
0
0, 8, 32, 104, 320, 968, 2912, 8744, 26240, 78728, 236192, 708584, 2125760, 6377288, 19131872, 57395624, 172186880, 516560648, 1549681952, 4649045864, 13947137600, 41841412808, 125524238432, 376572715304, 1129718145920, 3389154437768, 10167463313312
OFFSET
0,2
COMMENTS
Triameter of the n-Sierpinski carpet graph.
Binomial transform is 0,8,48,224,960,... A211012 shifted. - R. J. Mathar, Apr 07 2022
LINKS
Eric Weisstein's World of Mathematics, Graph Triameter
Eric Weisstein's World of Mathematics, Sierpinski Carpet Graph
FORMULA
a(n) = 4*A024023(n).
a(n) = 4*a(n-1) - 3*a(n-2).
G.f.: 8*x/((1 - x)*(1 - 3*x)).
a(n) = 8*A003462(n). - R. J. Mathar, Apr 07 2022
MATHEMATICA
Table[4 (3^n - 1), {n, 0, 20}]
4 (3^Range[0, 20] - 1)
LinearRecurrence[{4, -3}, {8, 32}, {0, 20}]
CoefficientList[Series[8 x/((1 - x) (1 - 3 x)), {x, 0, 20}], x]
PROG
(PARI) for(n=0, 30, print1(4*(3^n-1), ", ")) \\ G. C. Greubel, Apr 09 2018
(Magma) [4*(3^n -1): n in [0..30]]; // G. C. Greubel, Apr 09 2018
CROSSREFS
Cf. A024023.
Sequence in context: A178797 A357285 A100312 * A204643 A036393 A003201
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 09 2018
STATUS
approved