login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302506
Number of total dominating sets in the n-pan graph.
1
2, 3, 7, 12, 17, 27, 46, 75, 119, 192, 313, 507, 818, 1323, 2143, 3468, 5609, 9075, 14686, 23763, 38447, 62208, 100657, 162867, 263522, 426387, 689911, 1116300, 1806209, 2922507, 4728718, 7651227, 12379943, 20031168, 32411113, 52442283, 84853394, 137295675
OFFSET
1,1
COMMENTS
Extended to a(1)-a(2) using the formula/recurrence.
LINKS
Eric Weisstein's World of Mathematics, Pan Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
FORMULA
5*a(n) = 3*A000032(n+2) + 6*cos(n*Pi/2) - 2*sin(n*Pi/2).
a(n) = a(n-1) + a(n-2) + a(n-3) for n > 3.
G.f.: -x*(2 + x + 4*x^2 + 3*x^3)/((1 + x^2)*(x^2 + x - 1)).
E.g.f.: (6*cos(x) - 2*sin(x) - 15 + 3*exp(x/2)*(3*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)))/5. - Stefano Spezia, Jan 03 2023
MATHEMATICA
Table[(3 LucasL[n + 2] + 6 Cos[n Pi/2] - 2 Sin[n Pi/2])/5, {n, 20}]
LinearRecurrence[{1, 0, 1, 1}, {2, 3, 7, 12}, 20]
CoefficientList[Series[(-2 - x - 4 x^2 - 3 x^3)/(-1 + x + x^3 + x^4), {x, 0, 20}], x]
CROSSREFS
Cf. A000032.
Sequence in context: A128458 A066733 A049623 * A228828 A061577 A350437
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 09 2018
STATUS
approved