login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A350437
a(n) is the number of integers that can be represented in a 7-segment display by using only n segments (version A006942).
0
0, 0, 1, 2, 3, 7, 12, 18, 31, 52, 92, 158, 269, 460, 786, 1350, 2317, 3969, 6798, 11643, 19952, 34197, 58601, 100410, 172042, 294791, 505143, 865589, 1483206, 2541480, 4354847, 7462119, 12786520, 21909974, 37543133, 64330800, 110232005, 188884671, 323657539, 554593317
OFFSET
0,4
COMMENTS
The integers are displayed as in A006942, where a 7 is depicted by 3 segments. The negative integers are depicted by using 1 segment more for the minus sign.
Since the integer 0 is depicted by 6 segments, in order to avoid considering -0 in the case n = 7, a(7) is obtained by decreasing of a unit the result of the sum A331529(7) + A331529(6) = 12 + 7 = 19, i.e., a(7) = 19 - 1 = 18.
The same sequence is obtained when 7 and 9 are depicted respectively by 4 and 5 segments (A074458).
FORMULA
a(7) = 18, otherwise a(n) = A331529(n) + A331529(n-1).
G.f.: x^2*(1 + 2*x + 2*x^2 + 4*x^3 + 6*x^4 + 3*x^5 - x^7 - x^8 - 3*x^9 - 3*x^10 - x^11)/(1 - x^2 - x^3 - x^4 - 3*x^5 - 3*x^6 - x^7).
a(n) = a(n-2) + a(n-3) + a(n-4) + 3*a(n-5) + 3*a(n-6) + a(n-7) for n > 13.
EXAMPLE
a(7) = 18 since -111, -77, -41, -14, -9, -6, 8, 12, 13, 15, 21, 31, 47, 51, 74, 117, 171 and 711 are displayed by 7 segments.
segments.
__ __ __
__ | | | __ | | __ |__| | __ | |__| __ |__|
| | | | | | | | | __|
(-111) (-77) (-41) (-14) (-9)
__ __ __ __ __ __ __
__ |__ |__| | __| | __| | |__ __| | __| |
|__| |__| | |__ | __| | __| |__ | __| |
(-6) (8) (12) (13) (15) (21) (31)
__ __ __ __ __ __
|__| | |__ | | |__| | | | | | | | | |
| | __| | | | | | | | | | | | |
(47) (51) (74) (117) (171) (711)
MATHEMATICA
P[x_]:=x^2+x^3+x^4+3x^5+3x^6+x^7; c[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; b[n_]:=c[n]-c[n-6]; (* A331529 *)
a[n_]:=If[n!=7, b[n]+b[n-1], 18]; Array[a, 40, 0]
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Stefano Spezia, Dec 31 2021
STATUS
approved